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The paper proposes a numerical solution method for general equilibrium models with a

continuum of heterogeneous agents that combines elements of projection and of

perturbation methods. The basic idea is to solve first for the stationary solution of the

model, without aggregate shocks but with fully specified idiosyncratic shocks.

Afterwards one computes a first-order perturbation of the solution in the aggregate

shocks. This approach allows to include a high-dimensional representation of the cross-

sectional distribution in the state vector. The method is applied to a model of household

saving with uninsurable income risk and liquidity constraints. Techniques are discussed

to reduce the dimension of the state space such that higher order perturbations are

feasible.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic general equilibrium models with incomplete markets and a continuum of heterogeneous agents pose some
hard computational problems. The main problem is that the state vector includes the whole cross-sectional distribution of
wealth (or whatever the individual state variable of the agent is). This is an infinite-dimensional object.

The most widely used method to solve this class of models is the one pioneered in Krusell and Smith (1998). Alternative
methods that have been around for some years are Den Haan (1997) and Reiter (2002). All these approaches have in
common that they try to represent the cross-sectional distribution of wealth by a very small number of statistics in order to
reduce the dimensionality of the state space. For the models studied in those papers, this approach was shown to work very
well. In fact, Krusell and Smith (1998) find that in order to predict future values of aggregate capital with reasonable
precision, everything one has to know about today’s distribution of capital is the mean. Higher moments of the distribution
matter very little. In Krusell and Smith (2006) they explain this approximate aggregation result in detail.

However, this can hardly serve as a general approach to the solution of heterogeneous-agent models. For example, in
models where firms follow (S,s)-policies (price setting, inventory holdings, etc.), we expect that the cross-sectional
distribution of the relevant variables enters the solution in an essential way, and the solution algorithm may have to keep
track of a medium- or high-dimensional representation of this distribution. Some very recent approaches promise to live
up to this challenge. Algan et al. (2008) develop a method that uses a flexible parameterization of the cross-sectional
distribution and makes heavy use of projection methods. It increases computational efficiency over earlier approaches in a
number of ways and will allow to handle a higher number of state variables. Kim et al. (2007) and Preston and Roca (2007)
apply perturbation methods. They perturb the solution around the deterministic steady state, with no aggregate or
ll rights reserved.
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idiosyncratic shocks and a degenerate cross-sectional distribution. The disadvantage of this approach is that it is a local
approximation method, and the handling of inequality constraints, for example liquidity constraints, is problematic. The
main advantage is that the method will allow to handle higher moments and/or several individual state variables.

In this paper, I propose an alternative procedure, which combines features of projection methods and of perturbation
methods.1 The idea is to compute a solution that is fully nonlinear in the idiosyncratic shocks, but only linear in the
aggregate shocks. In a first step, I use ideas of projection methods to find a finite parameterization of the model, including
the individual choice functions and the cross-sectional distribution of wealth. We put all the parameters characterizing the
economy at time t into the vector Yt. We then compute the stationary solution Y� of the finite model without aggregate
shocks. In a second step, I use the idea of perturbation to compute an approximation of the dynamics of Yt around the
steady state Y�. This approximation is linear in the aggregate shocks and in Yt itself. With this approach we can include a
very detailed representation of the cross-sectional distribution in the state vector. In the numerical examples of Section 5,
the distribution is characterized by up to 1000 state variables.

I apply the method to a model of household saving with uninsurable income risk and liquidity constraints. To make the
exposition transparent, I keep the model as simple as possible,2 but the method has much wider applicability. It can be
used for a wide range of models where agents have one individual state variable (wealth, productivity, product price, etc.).
Generalizations to more than one continuous individual state variable are straightforward, although this requires to
approximate a multidimensional cross-sectional distribution, such that accuracy will probably be reduced. The approach
should prove particularly useful in models where the distribution matters, for example when individual policy functions
are discontinuous (menu cost models of pricing, or labor market participation, Haefke and Reiter (2006)). Of course, the
method is suitable only if linearity in aggregate variables is good enough for the purpose at hand, as it is in many business
cycle applications. It is not sufficient, for example, for problems of asset pricing. But even then, the linear solution is a
useful first step. With it we can study in detail the dynamics of the cross-sectional distribution that results from small
shocks, and we can find out whether some form of state aggregation is possible, and what suitable state variables are. In a
further step, one can then solve for the nonlinear dynamics in a reduced state space.

The plan of the paper is as follows. Section 2 presents a simple model that will serve as a test case for the solution
method. The method is presented in detail in Section 3. Section 4 explains how parameters and functional forms were
chosen. Numerical results are given in Section 5. Section 6 discusses whether a low-dimensional VAR in the moments of the
capital distribution is suitable to describe the dynamics of the model. Section 7 concludes.

2. The model

There is a continuum of infinitely lived households of unit mass. Households are ex ante identical, and differ ex post
through the realization of their individual labor productivity. They supply their labor inelastically. Production takes place in
competitive firms with constant-returns-to-scale technology. A government is introduced into this model to the sole
purpose of creating some random redistribution of wealth. This helps to identify the effect of the wealth distribution on the
dynamics of aggregate capital.

2.1. Production

Output is produced by perfectly competitive firms, using the Cobb–Douglas gross production function

Yt ¼ YðK̄t�1; Lt ; ZtÞ ¼ ZtAK̄
a
t�1L1�a

t ; 0oao1 (1)

where A is a constant. Notice that we follow the convention to choose the time index of a variable as the period in which
this variable is determined. Production at the beginning of period t uses K̄t�1, the aggregate capital stock determined at the
end of period t � 1. Since labor supply is exogenous, and individual productivity shocks cancel due to the law of large
numbers, aggregate labor input is constant and normalized to Lt ¼ 1. Capital accumulates as

K̄t ¼ ð1� dÞK̄t�1 þ Yt � Ct (2)

where d is the depreciation rate and Ct is aggregate consumption. The aggregate productivity parameter Zt follows the
AR(1) process

log Ztþ1 ¼ rz log Zt þ �Z;tþ1 (3)
1 For a different type of model, a similar idea has been used in Campbell (1998, computational appendix). I am grateful to Tony Smith for pointing this

out to me. It solves a macroeconomic model with a continuum of plants, stated as a social planner’s problem. To my knowledge, this is the first paper

which exploits the idea of reducing an infinite-dimensional problem to a finite-dimensional one by some approximation and then linearize the

approximate model around the steady state. The reason why the computational contribution of that paper has not drawn more attention (apart from a

very interesting application in Michelacci and Lopez Salido (2007)) may be that people were not aware of its wide applicability, or that they were afraid of

the lengthy linearizations that appear in the computational appendices of Campbell (1998) and Michelacci and Lopez Salido (2007). In fact, as will become

clear below, the linearization can be left to the computer, so that it puts no burden on the researcher.
2 The Matlab programs to solve this model are available at http://elaine.ihs.ac.at/�mreiter/hetagent.tar.gz.

http://elaine.ihs.ac.at/~mreiter/hetagent.tar.gz
http://elaine.ihs.ac.at/~mreiter/hetagent.tar.gz
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where �Z is an i.i.d. shock with expectation 0 and standard deviation sz. The before tax interest rate r̄t and the wage wt are
determined competitively:

r̄t ¼ YK ðK̄t�1; Lt ; ZtÞ � d (4)

wt ¼ YLðK̄t�1; Lt ; ZtÞ (5)

2.2. The government

As I said earlier, the only purpose of the government is to create some random redistribution of wealth. The government
does this through a tax tt levied at the beginning of t on the capital stock accumulated at the end of period t � 1. The after
tax interest rate rt is then related to the before tax rate by

rt ¼ r̄t � tt (6)

The revenues are redistributed lump sum, providing a transfer Tt to every household. The government has to balance its
budget every period:

Tt ¼ ttK̄t�1 (7)

The tax rate follows an AR(1) process around its steady state value t�:

ttþ1 � t� ¼ rtðtt � t�Þ þ �t;tþ1 (8)

where �t is an i.i.d. shock with expectation 0 and standard deviation st.

2.3. The household

There is a continuum of households, indexed by i. Households differ ex post by their labor productivity xt;i. Labor
productivity is assumed to be i.i.d., and is normalized to have unit mean:

Ext;i ¼ Et�1xt;i ¼ 1 (9)

For convenience of exposition I assume that xt;i has a continuous distribution with density function f ðxÞ. The corresponding
distribution function is denoted by FðxÞ. The density and distribution function of labor income depend on the wage and are
denoted by

f y
t ðyÞ ¼

1

wt
f

y

wt

� �
(10a)

Fy
t ðyÞ ¼ F

y

wt

� �
(10b)

The household supplies inelastically one unit of labor. Its labor earnings are therefore given by

ȳt;i ¼ wtxt;i (11)

With the government lump sum transfer Tt, the net non-capital income is given by

yt;i ¼ ȳt;i þ Tt (12)

Household i enters period t with asset holdings kt�1;i left at the end of the last period. It receives the net interest rate rt on
its assets, such that the available resources after income of period t (‘cash on hand’) are given by

xt;i ¼ ð1þ rtÞkt�1;i þ yt;i (13)

Cash on hand is split between consumption and asset holdings:

kt;i ¼ xt;i � ct;i (14)

We impose the liquidity constraint

kt;iX k (15)

The solution of the household problem is given by a consumption function Cðx;OtÞ, or equivalently a savings function

Kðx;OtÞ � x� Cðx;OtÞ (16)

where Ot denotes the vector of state variables, which will be specified later. The first order equation of the household
problem is the Euler equation

U0ðCðx;OtÞÞXbEt½RðOtþ1ÞU
0
ðCðRðOtþ1Þðx� ct;iÞ þ ytþ1;i;Otþ1ÞÞ� and Cðx;OtÞ ¼ x� k (17a)
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or

U0ðCðx;OtÞÞ ¼ bEt½RðOtþ1ÞU
0
ðCðRðOtþ1Þðx� ct;iÞ þ ytþ1;i;Otþ1ÞÞ� and Cðx;OtÞox� k (17b)

where RðOtþ1Þ � 1þ rðOtþ1Þ. The expectation in (17) is over the distribution of xtþ1;i and of Otþ1. Since the household
problem is concave, Eq. (17) together with the constraint (15) are both necessary and sufficient for a solution of the
household problem. Notice that the solution depends on the aggregate state Ot only through the expected future dynamics
of the factor prices.

2.4. Dynamics of the cross-sectional distribution

The cross-sectional distribution of cash on hand at the beginning of period t, after the realization of labor income, is
continuous, because we have assumed that idiosyncratic productivity xt;i has a continuous distribution. Denote the density
of cash-on-hand by ftðxÞ. The distribution of assets at the end of period t has a mass point of liquidity constrained
households which hold the minimum level of assets k. For k4 k, the distribution is continuous and we denote the density
function by ctðkÞ. The cross-sectional distribution function CtðkÞ is defined as the fraction of households i such that kt;ipk.
End-of-period aggregate capital is given by

K̄t ¼

Z
k dCtðkÞ (18)

The mass point satisfies

CtðkÞ ¼

Z wt

�1

ftðxÞdx (19a)

Here wt is the value of cash-on-hand where the liquidity constraint starts binding. The cross-sectional density of capital
ctðiÞ satisfies

ctðKðx;OtÞÞKxðx;OtÞ ¼ ftðxÞ; x4wt (19b)

where Kxðx;OtÞ denotes the partial derivative of the savings function. For the following formula, we use the
abbreviation:

atðkÞ � ð1þ rtÞkþ Tt (20)

for the level of assets after interest and lump sum subsidy, but before labor income. Then the density of cash-on-hand is
related to last period’s distribution of capital by

ftðxÞ ¼ Ct�1ðkÞf
y
t ðx� atðkÞÞ þ

Z 1
k

f y
t ðx� atðkÞÞct�1ðkÞdk (21)

Eqs. (19) and (21) can be combined into a dynamic equation in the distribution of k.3 UsingZ wt

�1

Z 1
k

f y
t ðx� atðkÞÞct�1ðkÞdk dx ¼

Z 1
k

ct�1ðkÞ

Z wt

�1

f y
t ðx� atðkÞÞdx dk

¼

Z 1
k

ct�1ðkÞF
y
t ðwt � atðkÞÞdk (22)

we get

CtðkÞ ¼ Ct�1ðkÞF
y
t ðwt � atðkÞÞ þ

Z 1
k

ct�1ðkÞF
y
t ðwt � atðkÞÞdk (23a)

and

ctðKðx;OtÞÞKxðx;OtÞ ¼ Ct�1ðkÞf
y
t ðx� atðkÞÞ þ

Z 1
k

f y
t ðx� atðkÞÞct�1ðkÞdk; 8x4wt�1 (23b)

2.5. Equilibrium of the model

We call the set of Eqs. (3), (7), (8), (17) and (23) the theoretical model. The ‘natural’ state variables of this model at time t

are the exogenous driving forces Zt and tt and the cross-sectional distribution of capital holdings inherited from the last
period, Ct�1ðkÞ. We therefore choose Ot � ðZt ; tt ;Ct�1ðkÞÞ. A stationary equilibrium in Ot consists of a consumption function
3 We could also write the dynamic equation in the distribution of x, but it is better to write it in k, because the distribution of k at the end of period

t � 1 is the appropriate state variable in period t. The distribution of x in t is already affected by the aggregate shocks of period t.
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Cðx;OtÞ, a stochastic process of cross-sectional distribution functions CtðkÞ and a process of lump sum transfers Tt

such that:
(1)
4

5

Cheb
the consumption function satisfies the Euler equation (17),

(2)
 the cross-sectional distribution satisfies the dynamic equations (23) and

(3)
 the transfer satisfies the government budget constraint (7).
To my knowledge, it has not been proven that a stationary equilibrium in Ot exists; Miao (2006) proves a recursive
equilibrium in a larger state space including expected payoffs to households. In the following section, we will introduce a
discrete approximation to this economy, and the computations can be seen as a ‘constructive proof’ that the approximate
equation system has a stable solution for sufficiently small aggregate shocks.

3. Method

The solution method proposed here has three steps:
(1)
 Providing a finite representation of the economy. This includes representing the savings function Kðx;OtÞ ¼ x� Cðx;OtÞ

by a vector st; we will choose st as the value of Kðx;OtÞ at the knot points of a spline approximation. It also includes the
vector pt which represents the cross-sectional distribution of wealth CtðkÞ; we will choose for pt the probability mass
of households within specified intervals of capital holdings (histogram values). The set of equations for this finite
number of variables is called the ‘discrete model (DM)’.
(2)
 Computing the steady state of the economy, that is, the stationary economy when the aggregate shocks are identically
zero. Concretely, aggregate productivity Zt and the tax on capital tt are constant. The idiosyncratic productivity shocks
xt;i are the same as in the full model.
(3)
 Computing a first-order perturbation of the steady state solution in all the variables of the model. This gives a precise
solution of the DM for small aggregate shocks �Z , �t.
3.1. Finite approximation of the model equations

3.1.1. Savings, consumption and the Euler equation

The consumption function Cðx;OtÞ is very well behaved. At least for the steady state, we know (Carroll, 2004) that
(1)
 Cðx;OtÞ is concave in x.

(2)
 There is an wt such that Cðx;OtÞ ¼ x� k for xpwt and Cðx;OtÞox� k for x4wt.

(3)
 The limit limx!1qCðx;OtÞ=qx exists.
This motivates the following smooth approximation of the savings function. I represent Kðx;OtÞ by np þ 1 numbers,
collected into the vector st: the critical value wt , and the values kt;i, i ¼ 1; . . . ;np at np knot points xt;i with xt;i4wt . The knot
points are chosen as xt;0 ¼ wt and xt;i ¼ wt þ Xi, i ¼ 1; . . . ;np with some fixed set of grid points Xi.

4 Off the knot points xt;i, the
function Kðx;OtÞ is then approximated by

K̂ðx; stÞ ¼

k for xpwt

CSIðxÞ for wtoxpxt;np

kt;np þ CSI0ðxt;np Þðx� xt;np Þ for x4xt;np

8><
>: (24)

where CSIðxÞ stands for ‘cubic spline interpolation’, the natural cubic spline that interpolates the points ðwt ; kÞ, ðxt;i; kt;iÞ,
i ¼ 1; . . . ;np. 5 Beyond the last knot point xt;np , we approximate the savings function by a straight line, with the slope given
by the derivative of the spline at kt;np .

We approximate the expectation over the individual productivity shock x on the right-hand side of the Euler equation
(17) by a finite sum, with quadrature points x̂i and weights ox

i , i ¼ 1; . . . ;nx. The details of the quadrature depend on the
distribution of x, and will be discussed in Section 4.2.

Since we approximate the savings function by a spline with np þ 1 degrees of freedom, we apply a collocation method
and require the Euler equation (17) to hold with equality at the knot points xt;i:

U0ðĈðxt�1;i; st�1ÞÞ ¼ b
Xnx

j¼1

ox
j ½Rðpt�1; ZtÞU

0
ðĈðX̂ij; stÞÞ� þ Zc

i;t ; i ¼ 0; . . . ;np (25a)
For the Xi I take a grid with many points close to 0, because the consumption function has high curvature close to the kink point wt .

Because of the strong nonlinearity of the consumption function around wt , my experience is that a spline approximation works better than

yshev polynomials.
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where Ĉðx; stÞ is short for x� K̂ðx; stÞ and

X̂ij � Rðpt�1; ZtÞðxt�1;i � Ĉðxt�1;i; st�1ÞÞ þWðpt�1; ZtÞx̂j þ Tt (25b)

We use the fact that gross interest rate Rðpt�1; ZtÞ and wage rate Wðpt�1; ZtÞ are a function of the end of last period’s capital
and today’s productivity. Eq. (25a) uses the notation of Sims (2001): the Zc

i;t are the expectation errors that result from the
aggregate shocks (idiosyncratic shocks are handled by summing over the quadrature points). They are determined
endogenously in the solution of the system (cf. Section 3.3).

3.1.2. Wealth distribution

There are several ways to parameterize a distribution function. One approach is to approximate the density function by
a linear combination of known, smooth basis functions (polynomials, Gaussian densities, etc.) and force the dynamic
equations (23) to hold on a set of collocation points. This is the approach taken in Bohacek and Kejak (2005). The downside
of this approach is that we have to take care to enforce the non-negativity of the density function, which will involve the
solution of a set of nonlinear equations. Here I follow a different path, which allows to compute the stationary distribution
by a system of linear equations (cf. (34)). I first truncate the distribution of capital at a maximum level k. Then I split the
support into nd small intervals by a grid of points k ¼ k0;k1; . . . ;knd

¼ k (I will choose nd ¼ 1000 below). The truncation
point k must be chosen such that in the steady state distribution, a very small fraction of households is close to k. Then I
characterize the distribution by the mass at the lower bound, p0

t � CtðkÞ, and the mass on the intervals
pi

t � CtðkiÞ �Ctðki�1Þ, i ¼ 1; . . . ;nd, which are stacked into the vector pt � ðp
0
t ; p

1
t ; . . . ; p

nd
t Þ. These probabilities satisfy

pi
t ¼

Z ki

ki�1

ctðkÞdk ¼

Z xt;i

xt;i�1

ctðKðx;OtÞÞKxðx;OtÞdx

¼

Z xt;i

xt;i�1

Ct�1ðkÞf
y
t ðx� atðkÞÞ þ

Z 1
k

f y
t ðx� atðkÞÞct�1ðkÞdk

" #
dx

¼ Ct�1ðkÞ½F
y
t ðxt;i � atðkÞÞ � Fy

t ðxt;i�1 � atðkÞÞ�

þ

Z 1
k

ct�1ðkÞ½F
y
t ðxt;i � atðkÞÞ � Fy

t ðxt;i�1 � atðkÞÞ�dk (26)

where the xt;i are implicitly defined by

Kðxt;i;OtÞ ¼ ki (27)

Formula (26) contains expressions of the form
R1

k ct�1ðkÞF
y
t ðx� atðkÞÞdk, which have to be evaluated for many different x.

To compute this integral, I will assume that the probability mass is approximately uniformly distributed within each
interval (constant density function):

ctðkÞ �
pi

t

ki � ki�1
; k 2 ðki�1;kiÞ; 8i (28)

Then we get, using (20), thatZ 1
k

ct�1ðkÞF
y
t ðx� atðkÞÞdk ¼

Xnd

i¼1

Z ki

ki�1

ct�1ðkÞF
x� atðkÞ

wt

� �
dk

�
X

i

pi
t�1

ki � ki�1

Z ki

ki�1

F
x� atðkÞ

wt

� �
dk

¼
X

i

pi
t�1

ki � ki�1

Z ðx�at ðki�1ÞÞ=wt

ðx�at ðkiÞÞ=wt

FðxÞ
wt

Rt
dx

¼
X

i

pi
t�1

ki � ki�1

wt

Rt
Fð1Þ

x� atðki�1Þ

wt

� �
� Fð1Þ

x� atðkiÞ

wt

� �� �
(29)

Here, Fð1ÞðxÞ is defined as the integral of the distribution function FðxÞ with respect to x. To evaluate it quickly, we do the
following preparatory steps at the beginning of the model solution. First, we compute Fð1ÞðxÞ at a dense grid of x by
numerical integration. Then we use those values to compute a spline approximation of Fð1ÞðxÞ which preserves the
convexity of this function. I use Schumaker’s quadratic splines (Judd, 1998, p. 231), exploiting that the derivative of Fð1ÞðxÞ is
FðxÞ. Afterwards we evaluate Fð1ÞðxÞ always by spline interpolation.

These derivations are summarized in the following linear dynamic equation for pt:

pt ¼ PðÔtÞpt�1 (30a)

where the aggregate state vector in the DM is given by Ôt � ðpt�1; Zt ; ttÞ. The elements of the transition matrix PðÔtÞ are
(cf. (23a), (26) and (29))

P0;0ðÔtÞ ¼ Fy
t ðwt � atðkÞÞ (30b)
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Pi;0ðÔtÞ ¼ Fy
t ðxt;i � atðkÞÞ � Fy

t ðxt;i�1 � atðkÞÞ; i ¼ 1; . . . ;nd (30c)

P0;jðÔtÞ ¼
1

kj � kj�1

wt

Rt
Fð1Þ

wt � atðkj�1Þ

wt

� �
� Fð1Þ

wt � atðkjÞ

wt

� �� �
; j ¼ 1; . . . ;nd (30d)

Pi;jðÔtÞ ¼
1

kj � kj�1

wt

Rt
Fð1Þ

xt;i � atðkj�1Þ

wt

� �
� Fð1Þ

xt;i � atðkjÞ

wt

� ��

�Fð1Þ
xt;i�1 � atðkj�1Þ

wt

� �
þ Fð1Þ

xt;i�1 � atðkjÞ

wt

� ��
; i; j ¼ 1; . . . ;nd (30e)

Notice that PðÔtÞ depends on K̂ðx; stÞ through (27) where we use K̂ðx; stÞ for Kðx;OtÞ.

3.1.3. The Discrete Model

With the finite approximations defined above, we can now reduce the model to a finite set of equations in each period t.
The DM consists of the Eqs. (3), (8), (25), (30a) and the government budget constraint

Tt ¼ ttK̄ðptÞ (31)

where K̄ðptÞ is aggregate capital, the first moment of the cross-sectional distribution of capital. It is computed using the
following formula for the j-th moment of the capital stock

Z
kj dCtðkÞ ¼ kjCtðkÞ þ

Z 1
k

kjctðkÞdk � kjp0
t þ

X
i

pi
t

kjþ1
i � kjþ1

i�1

ðjþ 1Þðki � ki�1Þ
(32)

Eq. (32) uses again the approximation (28).
These equations define, for each period t, a system of np þ nd þ 4 equations in just as many variables: st , pt (note that p0

t

is redundant since probabilities sum to unity), Tt , Zt and tt . Of those, pt are endogenous state variables, Zt and tt are
exogenous state variables, while st and Tt are control or ‘jump’ variables.

3.2. Solving for the steady state

Given the finite approximation of the model described above, we are now ready to solve for the stationary state of the
model, characterized by constant values of the exogenous aggregate variables Zt ¼ 1 and tt ¼ t�. Solving for the steady
state then involves a one-dimensional fixed-point problem in the aggregate capital stock K� . This problem is described by
the following steps:
(1)
 Guess the steady state capital stock K� . This determines the net interest rate r� ¼ YK ðK
�;1;1Þ � t� � d, the wage

w� ¼ YLðK
�;1;1Þ and transfers T� ¼ t�K�. Then compute the parameters of the savings and consumption function, s�, so

as to satisfy the household optimality condition (25).

(2)
 Given r�, T� and s�, compute the parameters of the cross-sectional distribution p� so as to satisfy (30).

(3)
 Check whether the guess K� is consistent with the cross-sectional distribution of capital computed in the last step.
These steps are now described in more detail.

3.2.1. Finding the parameters of the consumption function

In steady state, the Euler equation (25) reduces to

U0ðĈðx�i ; s
�ÞÞ ¼ b

Xnx

j¼1

ox
j ½ð1þ r�ÞU0ðĈðð1þ r�Þk�ðx�i Þ þw�x̂j þ T�; s�ÞÞ�; i ¼ 0; . . . ;np (33)

Given r�, w� and T�, this is a system of np þ 1 nonlinear equations in the np þ 1 components of s�. This can be solved
without problems by a quasi-Newton algorithm (cf. the routine ‘broydn.m’ in the accompanying Matlab code).

3.2.2. Computing the invariant distribution

Given the steady state savings function K̂ðx; s�Þ, we obtain from (30) the matrix P� that describes the stationary
transition dynamics of the wealth distribution. The finite parameterization of the steady state distribution p� is then a non-
zero solution of the linear equation system

p� ¼ P�p� (34)
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From the theory of Markov chains, and the properties of the consumption function, one can show that there is a unique p�

such that
P

ip
�
i ¼ 1.6 It can be found as the eigenvector of P� belonging to the unit eigenvalue. Since P� is moderately

sparse, this can be done quickly with the matlab ‘eigs’ command.7

3.2.3. Solving for the aggregate capital stock

Starting from a guess of the aggregate capital stock K�, we have found p�, which implies a value for K� by (18). Therefore
we are left with a one-dimensional root-finding problem in K�. This can be easily solved by bisection or by Brent’s method
(cf. Press et al. (1986, Section 9.3), also implemented in the Matlab command ‘fzero’).

3.3. Perturbation of the steady state

In Section 3.1.3 we saw that Eqs. (3), (8), (25), (30a) and (31) define, for each period, a system of np þ nd þ 4 equations in
just as many variables. Collect all those variables in the vector Yt. Collect the expectation errors in the vector Zt, and the
exogenous shocks in �t � ð�Z;t ; �t;tÞ. The system of equations can then be written in the compact form

HðYt�1;Yt ;Zt ; �tÞ ¼ 0 (35)

Denote by Y� the steady state values of Yt . Obviously, we have

HðY�;Y�;0;0Þ ¼ 0 (36)

The linearized stochastic model is given by

H1ðY
�;Y�;0;0ÞðYt�1 �Y�Þ þ H2ðY

�;Y�;0;0ÞðYt �Y�Þ þ H3Zt þ H4�t ¼ 0 (37)

where Hi, i ¼ 1;2;3;4 denotes the partial derivative of H with respect to its i-th argument. The analytical computation
of the partial derivatives would be tedious. Automatic differentiation would be possible, but is not available in
the Matlab environment that I use. I therefore choose the simplest approach, computing the derivatives by forward
differencing. This is clearly not computationally efficient compared to automatic differentiation, but it turns out to be good
enough.

The system of Eqs. (37) is in the form that can be solved by the package of Sims (2001). The number of state variables is
nd þ 2, the number of jump variables is np þ 2. In the numerical examples below, I use nd ¼ 1000 and np ¼ 100. The policy
function is then characterized by a 102� 1002 matrix, the state transition function by a 1002� 1002 matrix. Although
dynamics is linear in all variables, this allows for a very rich dynamic structure. On a laptop with Intel Centrino 2 GHz
processor and Matlab 7.1, it takes about 25 min to build the matrices in (37) by forward differencing, and then about 6 min
to solve the model by Sims’ method.

3.4. State space reduction

With our non-parametric approach, to solve precisely for the steady state distribution we need a fine grid, that is a big
nd. In the model with aggregate shocks, the nd parameters of the cross-sectional distribution, contained in pt , are then all
state variables. For very high nd, say 10,000, one can still solve for the steady state p�, but solving for the dynamics of the
distribution is currently not feasible on a PC. Even if feasible, one might get a sufficiently precise solution by some form of
state space reduction. In the following I propose a method to do this.

We can approximate the perturbations in nd-dimensional space by a lower-dimensional smooth parameterization, for
example by the linear combination of some smooth basis functions:

pt � p� þ Bbt (38)

Here B is a nd � nB-matrix of known basis functions, and bt is the vector of time-varying coefficients. In (38), we separate
the parameterization of the invariant distribution p� from the parameterization of the deviations, Bbt . The vector of state
variables characterizing the deviations of the distribution from the steady state is now bt with dimension nB.

The matrix B represents a linear operation that transforms an nB-dimensional parameter vector into an nd-dimensional
distribution. If nBond, we cannot expect (30a) to hold for all nd points of pt . To define exactly nB conditions on the
distribution, we define an inverse operation to B, which assigns to any nd-dimensional distribution an nB-dimensional
parameter vector. Denote the matrix of this operation by PB. Then we can replace (30a) by the weaker condition

btþ1 ¼ PB½PðÔtÞðp
� þ BbtÞ � p�� (39)
6 Even the richest household (k ¼ k) is driven down to k ¼ k in a finite number of period if it always draws the worst possible income shock. Starting

from k, the household reaches k in a few periods, if it always draws the highest income shocks. Since the income distribution has a connected support, and

the consumption function is continuous, the household reaches all intermediate capital values with positive probability in the same number of periods.

Then P� satisfies all the conditions of Stokey and Lucas (1989, Theorem 11.4).
7 In the numerical experiments reported below, I have done this for matrices up to nd ¼ 5000. In cases where nd is much bigger, but sparse, one could

use even more sophisticated procedures to find the invariant distribution (Virnik, 2007).



ARTICLE IN PRESS

M. Reiter / Journal of Economic Dynamics & Control 33 (2009) 649–665 657
Obviously, we will require that PBBbt ¼ bt . This means that PB gives the coefficients of a projection into spanðBÞ. One could
choose the orthogonal projection, PB ¼ ðB

0BÞ�1B. This is not optimal in general: the numerical experiments show that it is
important to guarantee that this operation preserves the mean of the distribution. More generally, we may want to impose
that the projection preserves a set of linear conditions:

M0p ¼ M0BPBp; 8p 2 Rndþ1 (40)

for some given matrix M. This can be achieved by including M into B, or by choosing

PB ¼
N0B0B

M0B

 !�1
N0B0

M0

 !
; N � nullðM0BÞ (41)

I have done some experimentation with this, and it seemed best to use (41) and to impose only the preservation of the first
moment, not of higher moments.

To summarize, the reduced model consists of the Eqs. (3), (8), (25), (31) and (39) in the variables st , bt , Tt , Zt and tt .
For the choice of basis functions, cf. Section 5.3.2.

4. Parameter values and functional forms

I solve the model at annual frequency. For the model parameters I use standard values, b ¼ 0:95, a ¼ 1
3, d ¼ 0:1. For the

utility function I use CRRA

UðcÞ ¼
c1�g � 1

1� g
(42)

with risk aversion parameter g 2 f1;5g. The parameter A in the production function is set to A ¼ ðb�1
� 1þ dÞ=a, such that

the steady state capital stock of the representative agent model equals 1.
For the technology shock I choose rz ¼ 0:8 and sz ¼ 0:014, which are standard values, in annual terms. I choose

the tax shock as uncorrelated, rt ¼ 0, to create unpredictable short-run redistributions. The variability of the
tax shock is set, rather arbitrarily, to st ¼ 0:02. Taxes fluctuate around zero, so t� ¼ 0. Note that the variance
of the shocks has no other role here than to scale the simulations, since our approximate solution is linear in the
aggregate shocks.

4.1. The distribution of individual productivity

I look at two specifications of the labor income distribution. The first one is the log-normal distribution, which has a thin
tail. Following Carroll (2001), I choose standard deviation and mean of logðxt;iÞ as s ¼ 0:2 and m ¼ �0:5s2, which gives an
expected value of productivity of 1, as required by (9).

The second distribution is the Pareto distribution, which has a thick tail. The distribution function is given by

FðxÞ ¼ 1� Cx�m; m41 (43)

The distribution has support x 2 ðC1=m;1Þ. Choosing the constant C ¼ ððm� 1Þ=mÞm gives an expected value of 1. I choose
m ¼ 2, which is approximately what Saez (2001) finds for the US income distribution. For mp2, the Pareto distribution has
infinite variance. In the computations, however, I truncate the distribution at the point x̄ where Fðx̄Þ ¼ 1� 10�5, so that
existence of moments is not an issue.

Comparing results for these two distributions with very different characteristics allows us to study the role of the
wealth distribution in the dynamics of aggregate capital.

4.2. Quadrature formulas

In the case of a log-normal distribution, I use Gauss–Legendre quadrature for the x̂i and ox
i in Eq. (25a).

This is implemented in Matlab by the routine ‘qnwnorm’ of the Compecon toolkit that comes with Miranda and Fackler
(2002).

In the case of a Pareto distribution, I use the following procedure: I choose a set of cumulative probabilities Pj,
j ¼ 0; . . . ;nx with P0 ¼ 0, Pj4Pj�1 and Pnx ¼ 1� 10�5 (recall that the distribution is truncated at 1� 10�5). Then I set

ox
j � Pj � Pj�1 (44a)

x̂j �
1

Pj � Pj�1

Z qðPjÞ

qðPj�1Þ

xf ðxÞdx (44b)

where qðpÞ is the p-th percentile of the distribution of x. The quadrature points x̂j are the expectations of x, conditional on
x 2 ðqðPj�1Þ;qðPjÞÞ. I choose the Pj such that the ox

j are 10�5, 10�4, 10�3 and 10�2, respectively, for the highest intervals. The
rest of the probability mass is divided into equal intervals. This makes sure that the top income earners are well
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represented in the discrete approximation. The numerical experiments reported in Section 5 use nx ¼ 41. Increasing this
parameter has no significant effect on the results.

Note that this quadrature rule is only used for the Euler equations. The dynamics of the wealth distribution, developed
in Sections 2.4 and 3.1.2, uses the distribution function FðxÞ.
5. Numerical examples

The numerical examples presented here illustrate how the method works with the simple model of Section 2, and which
level of accuracy we can expect. After showing some of the dynamic properties of the model, I will investigate the accuracy
of the computed solution, proceeding in two steps. First, I estimate the approximation error that comes from replacing the
theoretical model of Section 2.5 by the DM of Section 3.1.3. Then I estimate the approximation error that arises from the
state space reduction (Section 3.4). The error analysis should be understood as applying to the case of (infinitesimally)
small aggregate shocks, even if the shocks are scaled to realistic size for convenience. I do not investigate the error arising
from big aggregate shocks.
5.1. The dynamics of the economic model

Table 1 shows some summary statistics (mean, standard deviation, skewness and kurtosis) of the cross-sectional
distribution of income and wealth. The lognormal distribution has a standard deviation of about 0.2. It is skewed to the
right, and has thin tails (the kurtosis is only slightly above that of the normal distribution, which equals 3). In contrast, the
truncated Pareto distribution has much higher variance, is strongly skewed to the right and has fat tails (high kurtosis).
Notice that, without truncation, these moments would be infinite. The wealth accumulation process levels out some of
these differences: with the lognormal, the wealth distribution has higher skewness and kurtosis than the income
distribution, the opposite happens with the Pareto distribution. The last column in the table shows the fraction of
households that are close to the liquidity constraint (kp kþ0:1). We see first that this fraction is smaller when consumers
are more risk averse (g ¼ 5), since these consumers try harder to avoid the region of low asset holdings. More interestingly,
this fraction is much higher when the income distribution is very unequal and has fat tails (Pareto). Households with very
high transitory income shocks save approximately the fraction 1� r of this income. With fat tails, there are more of those
people every period. This reduces the interest rate and drives more households down to the liquidity constraint.

Table 2 documents the effect of the different shocks on the dynamics of the capital distribution. As one would expect,
the tax shocks create more variation in the cross-sectional variance and less variation in the mean of capital than the
technology shocks. Interestingly, in the case of a distribution with fat tails, the variability of the cross-sectional variance is
not as high as in the thin-tail distribution, but it generates a higher variability of mean capital. This is because there are
more households in the region where the consumption function has strong curvature (cf. last paragraph), and therefore the
wealth distribution matters more for the dynamics of the capital stock.
Table 1
Statistics of the income and stationary wealth distribution

FðxÞ g Std x Skew x Kurt x Mean k Std k Skew k Kurt k p (bottom)

Logn 1 0.202 0.61 3.68 1.004 0.759 1.41 5.63 0.03

Pareto 1 1.373 27.90 1675.32 1.111 1.926 6.36 72.53 0.13

Logn 5 0.202 0.61 3.68 1.025 0.704 1.26 5.06 0.02

Pareto 5 1.373 27.90 1675.32 1.534 2.242 6.22 71.32 0.05

x: individual labor productivity, k: individual capital holdings, Std: standard deviation, Skew: skewness, Kurt: kurtosis, p(bottom): probability mass in the

range ð0;0:1Þ.

Table 2
Time series variability of capital

FðxÞ g Shocks Z Shocks t Shocks Z; t

K̄ Var k K̄ Var k K̄ Var k

Logn 1 3.11 5.81 0.13 31.43 3.12 31.96

Pareto 1 2.88 3.56 0.89 10.97 3.02 11.53

Logn 5 5.53 13.18 0.42 28.87 5.54 31.74

Pareto 5 4.04 4.17 1.33 12.54 4.26 13.22

K̄: 100 times standard deviation of log aggregate capital, Var k: 100 times standard deviation of log of cross-sectional variance of k.



ARTICLE IN PRESS

Table 3
Approximation error from discretization

FðxÞ g Euler resid. Approx. error distribution k

Max Ave p(top) CtðkÞ K̄ Std k Skew k Kurt k

Logn 1 �4.17 �7.00 �12.84 �3.33 �4.90 �2.69 �2.13 �1.99

Pareto 1 �3.25 �7.01 �14.72 �4.26 �4.26 �3.52 �4.33 �2.70

Logn 5 �3.91 �7.01 �12.70 �3.40 �4.24 �2.74 �2.19 �2.10

Pareto 5 �2.89 �6.56 �12.77 �4.46 �3.80 �3.38 �3.82 �2.79

All numbers are given as decimal log. For the exact definition of the Euler residual, cf. the text. p(top) is the probability mass in the range ð0:9k; kÞ. Other

statistics: difference between distribution with 1000 and with 5000 intervals. CtðkÞ: maximum difference of the distribution function. K̄-Kurt(k): relative

difference in mean, standard deviation, skewness and kurtosis.
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5.2. The approximation error from discretization

Table 3 shows some statistics to estimate the error that we make by the discretizations of Section 3.1. The first two
columns document the residual of the household Euler equation (25a). It is computed as ð1=CtÞ½Ct � U0�1

ðbð1þ r�ÞEtðU
0
ðCtþ1ÞÞ�, such that it expresses the residual as the relative error in consumption. The average absolute

residual is computed as the unweighted average on the range between w� and 10K̄ þ ymax, 10 times average capital plus the
maximum realization of income. We see that the average residual is indeed very low, but the maximum residual is about 3
orders of magnitude higher. The maximum occurs in the region near the critical point where the liquidity constraint starts
binding. Here the consumption function has high curvature and is more difficult to approximate by a spline, although I have
allocated half of all the knot points of the spline in this region. One can further reduce the residual by increasing the
number of parameters, np, which obviously comes at a higher computational cost.

The discretization of the cross-sectional distribution of wealth developed in Section 3.1.2 implies two types
of errors. The first one comes from truncating the distribution at k. The column ‘p(top)’ in Table 3 shows that
this error can be neglected: only about 10�13 of all households are in the range between 0:9k and k. The second
and more serious error arises insofar as the assumption in Eq. (28), which says that the density is constant within
intervals, is not satisfied. To get an estimate of the order of magnitude of this error, I compute the steady state
distribution both for nd ¼ 1000 and 5000 and measure the difference. The table gives the maximum absolute distance
between the two distribution functions, and the relative difference between the mean, standard deviation, skewness and
kurtosis. We see that the mean is hit quite precisely, but higher moments become more and more difficult to pin down.
Note that the difference in the invariant distributions is a tough criterion, since even minimal differences in the transition
matrix can add up to sizable differences in the distribution over an infinite horizon. From this perspective, accuracy seems
quite good.

5.3. The approximation error from state space reduction

What distinguishes the present method from other ones is that it uses a high number of state variables. In the examples
of this section, I use about 1000 state variables. It is then natural to ask whether this is in fact necessary, or whether an
approximate model using a much smaller state vector would already give sufficient accuracy. To address this question, I
consider the linearized DM of Eq. (37), with nd ¼ 1000, as the true model. Then I compare the exact solution to the outcome
of the reduced model of Section 3.4. Notice that, in the exact model, the law of motion that households use for making their
decision is fully consistent with the dynamics of the distribution that results from the individual policy function (unlike
methods where households base their decision on a small number of states).

5.3.1. Measuring the accuracy of approximate models

I will use two different accuracy measures. The first measure, (52), addresses the main concern in Den Haan (2007),
who suggests to use long-term forecasts to assess accuracy. In fact, the statistic (52) is the unconditional variance
of an infinite horizon forecast. Den Haan (2007) also stresses the importance to report maximum, not average errors.
This is crucial in a nonlinear context, but not so much here because we deal with linear processes. Assuming
normally distributed shocks, the forecast errors will also be normal with mean zero, so the variance gives us complete
information about the shock. Nevertheless, the second statistic, (53), is designed to provide information about the worst-
case error. It is the maximum error of a forecast up to 100 periods, under an extreme, highly unlikely realization of the path
of shocks.

Accuracy measure 1: Unconditional mean squared error: The solution of the exact model (37) can be written as

Yt ¼ AYt�1 þ B�t (45)
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where the matrices A and B are output of the solution algorithm. Any approximate model (denoted by a hat) that we
consider has the same form

Ŷt ¼ ÂŶt�1 þ B̂�t (46)

While the state variables of the approximate model are not the same as of the exact model, both models are driven by the
same shocks �. We can then combine them into

Y�t ¼ A�Y�t�1 þ B��t (47)

Y� �
Yt

Ŷt

" #
; A� �

A 0

0 Â

� �
; B� �

B

B̂

� �
(48)

The unconditional variance–covariance matrix SY� of Y� is obtained by solving the discrete Lyapunov equation

SY� ¼ A�SY�A
�T
þ B�S�B�

T (49)

The i-th non-central moment mi;t is a linear function of the state variables, both in the exact and the approximate models.
So we can write the moments of the exact and any approximate model as mi;t ¼ HiYt and m̂i;t ¼ ĤiŶt , respectively, with
known row vectors Hi and Ĥi. From (45) and (46) it is clear that the unconditional expected error is zero:

Eðmi;t � m̂i;tÞ ¼ 0 (50)

The unconditional mean squared error is then given by

E½ðmi;t � m̂i;tÞ
2
� ¼ ½Hi � Ĥi�SY�

HT
i

�Ĥ
T

i

2
4

3
5 (51)
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Fig. 1. Accuracy measures, log 10 of Eqs. (52) and (53).
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Below we will report the root mean squared error, normalized by the standard deviation of mi;t:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Hi � Ĥi�SY�
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�Ĥ
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5

HiSYHT
i
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(52)

This statistic can be interpreted as the average of an infinite-horizon forecast error under a typical realization of the driving
shocks.

Accuracy measure 2: Maximum absolute error with extreme shock realization: In the second experiment, we start from the
deterministic steady state and simulate both the exact model (45) and the approximate model (46) for 100 periods, such
that the same shock hits during 100 model periods. More precisely, I assume �Z;t ¼ sz and �t;t ¼ st for t ¼ 1; . . . ;100 (in the
case where Z is the only shock, st ¼ 0 and vice versa). Then I report the maximum relative error

max100
t¼1jmi;t � m̂i;tj

max100
t¼1jmi;tj

(53)

5.3.2. The accuracy of spline approximations of the distribution

We now analyze the model with a reduced state space, presented in Section 3.4. For the basis functions (the columns
of B), it is natural to try some standard smooth functions. Here I am going to use a spline basis. More precisely, since capital
extends over a large state space, I use splines not in the original k, but in the nonlinear transformation g ¼ logðkþ 1Þ. To
bring the model in form (46), let the vector Ŷt comprise the variables mentioned at the end of Section 3.4.

Fig. 1 displays the approximation error of aggregate capital K̄. The solid line gives the root mean squared error (52) of the
reduced model. The dashed line gives the maximum error from an untypical realization of shocks, (53), for the same model.
The stars and crosses in the graph refer to the VAR model explained in Section 6. The first surprising result is that the two
lines are so close to each other. It means that, as long as we consider very small shocks, a long untypical realization of
shocks creates similar aggregation errors as a an average realization. This might well be different for big shocks, where a
long series of positive or negative shocks would drive us further away from steady state, such that nonlinear effects may
become more important.

The picture shows some more things. First, the errors get reduced by 2 or 3 orders of magnitude if we use 100 state
variables for the distribution rather than just 3 or 10. Second, the Pareto distribution requires a higher-dimensional
approximation to achieve the same level of accuracy. Third, accuracy is much lower in the case of tax shocks. While these
shocks cause only small fluctuations in K̄ , as can be seen from Table 2, they create complicated dynamics that is difficult to
capture in a low-dimensional representation. The impulse response analysis in Section 6.3 will shed more light on this
issue. I do not want to speculate what level of accuracy is ‘sufficient’. However, in the case of tax shocks, a low-order
approximation gives forecast errors of the same order of magnitude as the variation in capital itself, which is clearly
unsatisfactory.
Table 4
Average errors of first four moments, from model with spline bases

Shock n ¼ 3 n ¼ 100

1 2 3 4 1 2 3 4

Lognormal income distribution, g ¼ 1

Z �2.80 1.22 2.26 3.12 �5.06 �3.14 �2.73 �2.47

t �0.41 1.37 2.16 2.94 �3.24 �2.76 �2.59 �2.43

Z,t �1.78 1.36 2.17 2.95 �4.59 �2.79 �2.59 �2.44

Pareto income distribution, g ¼ 1

Z �1.98 1.19 2.24 3.13 �5.09 �3.36 �3.12 �2.59

t �0.44 1.35 2.18 3.00 �3.62 �3.00 �2.87 �2.88

Z,t �1.53 1.29 2.20 3.04 �4.70 �3.10 �2.91 �2.77

Lognormal income distribution, g ¼ 5

Z �0.82 2.73 4.21 4.63 �4.48 �2.20 �0.86 �0.48

t 0.37 2.83 4.07 4.73 �3.52 �2.00 �0.90 �0.29

Z,t �0.15 2.81 4.08 4.72 �4.02 �2.02 �0.90 �0.32

Pareto income distribution, g ¼ 5

Z �1.10 2.55 3.94 4.17 �4.38 �2.29 �1.04 �0.86

t 0.28 2.64 3.89 4.95 �3.66 �2.67 �1.72 �0.92

Z,t �0.22 2.62 3.90 4.51 �4.10 �2.50 �1.40 �0.87

Results refer to (52). Numbers are given as decimal logs.
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Table 4 presents approximation errors not only for K̄, but for the first four non-central moments of the cross-sectional
distribution of capital. The first column of both tables indicates the driving shock: ‘Z’ means that the technology shock was
the only driving force, ‘t’ means that the tax shock was the only driving force, ‘Z,t’ means that both shocks are present. The
remaining columns provide the statistic (52) for different spline orders and different dimension of the VAR. The table
shows that movements of higher order moments are very difficult to get right, particularly in the case of the Paretian
distribution. This is in line with the findings of Section 5.2. With splines of order n ¼ 3, the errors are larger than the
fluctuations of the moments itself. Even with n ¼ 100, prediction errors of the third and fourth moment are large. We learn
that fluctuations of aggregate capital can be predicted very well despite of large errors in higher moments. This reflects
again the basic finding that higher moments do not have a big impact in this model.

6. Forecasting future aggregate capital by moments of the distribution

For a model that is very similar to ours, Krusell and Smith (1998) find that future values of the aggregate capital stock,
and therefore of factor prices, can be very well predicted using only the following information: today’s aggregate level of
capital, and current and future realizations of the exogenous driving shocks. We will now explore whether this is also true
in the present model.

6.1. A VAR model in moments

We define the state vector Ŷt � ½ðmt �m�ÞT logðztÞtt�
T, consisting of the exogenous driving processes and the vector of

the first nm non-central moments mt . In these variables, we define again an approximate model of the form (46). This time,
the matrices Â and B̂ are not the outcome of a model solution, as they were in the model with spline approximations, but
come from fitting a VAR model to the data series generated by the true model (45). Since we are dealing with linear models,
we need not resort to simulations of the model, but can determine Â and B̂ by the asymptotic formulas given in Appendix A.
In this way, our results are not contaminated by any sampling error.

Given Â and B̂, we can again compute the forecast errors described in Section 5.3.1. Notice that these errors are not the
ones that would result from an application of the Krusell/Smith method. However, they are probably a good indication of
the accuracy that this method can achieve in the present model. At least for the case of only one moment, I could confirm
that a suitable version of the Krusell/Smith algorithm has approximation errors of the same order of magnitude as the VAR
model with 1 moment.8

6.2. Numerical results

The stars and crosses in Fig. 1 display the root mean squared error (52) and the maximum error (53) for the VAR model
of dimensions 1–4 (this is unrelated to the numbers on the x-axis). The RMSE for the first four non-central moments of the
cross-sectional distribution of capital is given in Table 5, which is analogous to Table 4.

If only technology shocks are present, the results confirm what earlier papers have reported: a forecast based only on
the first moment (average capital) plus the exogenous shock appears to be very precise. If we express the error in terms of
R2 (forecast error variance relative to variance of aggregate capital), as is often done in the literature, it looks quite
impressive. In the log-normal case with g ¼ 1, for example, the infinite horizon error reported shown in the graph would
have R2

¼ 0:999988. For the one-step ahead forecast error, the R2 would be 0.9999997.
Things change once we allow for tax shocks that redistribute capital. In this case, forecasts based on one moment have

an error of between 30 and 70 percent of the fluctuation of capital, clearly an unsatisfactory outcome. Four moments are
necessary to bring the forecast error down to about 1 percent. I do not claim that the specification with the big tax shocks is
realistic; the purpose of the exercise is only to create a laboratory in which one can test a method that uses a high-
dimensional representation of the distribution. It suggests that the success of the one-moment forecast in the model with
technology shock does not mean that the distribution would not matter, but rather that the distribution does not change
very much. Once we have sufficient time-series variation in the distribution of capital, the one-moment model breaks
down. Admittedly, the tax-shock model is quite extreme in this respect. Table 2 tells us that the cross-sectional variance of
capital fluctuates 10–300 times more than mean capital.

In any case, the good news is that the inclusion of moments up to order 4 increases accuracy significantly, usually by
about two orders of magnitude. Table 5 shows that not only the first moment, but the higher moments themselves can be
predicted quite accurately. This means that a Krusell/Smith-type algorithm which uses higher moments has the potential of
being very accurate in this model. This should be explored in future work; the existing literature usually stops at one or two
moments.
8 Working with linear approximations to the model solutions, one can define a linearized version of the Krusell/Smith algorithm, in which the

estimation uses the asymptotic formulas of Appendix A, and thus avoid any sampling error. Explaining this algorithm and its properties is beyond the

scope of the present paper, but is the subject of ongoing work.
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Fig. 2. Impulse response of aggregate capital to t-shock, lognormal distribution, g ¼ 1.

Table 5
Average errors of first four moments, from VAR in moments

Shock d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4

1 1 2 1 2 3 1 2 3 4

Lognormal income distribution, g ¼ 1

Z �2.45 �3.14 �1.31 �3.63 �2.35 �2.42 �3.63 �2.99 �3.05 �3.21

t �0.47 �0.46 �0.70 �0.58 �1.30 �1.59 �1.25 �2.12 �2.40 �2.64

Z,t �1.43 �1.76 �0.67 �2.08 �1.46 �1.72 �2.41 �2.08 �2.34 �2.55

Pareto income distribution, g ¼ 1

Z �1.68 �2.44 �1.33 �3.19 �2.35 �2.45 �3.95 �3.28 �3.37 �3.52

t �0.14 �0.41 �0.64 �1.45 �1.82 �2.11 �2.20 �2.84 �3.11 �3.34

Z,t �1.13 �1.61 �0.83 �2.06 �1.64 �1.86 �2.50 �2.30 �2.51 �2.63

Lognormal income distribution, g ¼ 5

Z �2.52 �2.67 �2.08 �2.65 �2.00 �2.53 �3.89 �3.06 �3.22 �2.97

t �0.49 �1.12 �1.49 �1.95 �2.03 �2.36 �1.89 �2.13 �2.38 �1.83

Z,t �0.71 �1.39 �1.34 �1.91 �1.88 �1.95 �2.42 �2.15 �2.11 �1.62

Pareto income distribution, g ¼ 5

Z �1.58 �3.42 �2.56 �3.76 �2.91 �2.98 �3.79 �3.29 �3.43 �3.90

t �0.15 �1.64 �1.89 �2.17 �2.63 �2.43 �2.42 �2.82 �2.81 �2.01

Z,t �0.59 �1.43 �1.38 �1.56 �1.64 �2.17 �1.61 �1.62 �2.11 �1.98

Results refer to (52). Numbers are given as decimal logs.
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6.3. Response to a tax shock

Fig. 2 displays impulse responses to a shock �t in the capital tax. The two panels on the left-hand side show the response
of mean capital, the panels on the right-hand side show the response of the cross-sectional variance of capital. The two
panels in the upper part give the response of the exact model and the reduced model with spline bases. The panels in the
lower part show the exact model and the VAR model in moments.

The tax shock brings a sudden reduction in the cross-sectional variance of capital. Since the consumption function is a
concave function (cf. Section 3.1.1), this causes an increase in aggregate consumption: wealth was redistributed from richer
to poorer households, who have a higher propensity to consume. This causes a reduction in the future capital stock. Notice
that this effect really comes from redistribution, not from a shift in the consumption function: the expected future decrease
in capital raises the real interest rate, which reduces consumption for a given level of assets. The shift in the consumption
function therefore has a stabilizing effect and dampens the decrease of capital.

The model with spline approximations captures this, although the precision is low for no20. The response of the VAR
model yields some interesting insights. In the first two periods after the shock, the impulse responses are exact up to
machine precision. This is because the VAR captures precisely the effect of the present shock, and indirectly also of the past
shock, through the element t in the state vector. From the third period onwards, however, the VAR model ‘forgets’ the shock
(remember that rt ¼ 0). The VAR with one moment then predicts a slow return to the steady state, because, by
construction, information on the distribution does not matter. The picture illustrates nicely that a solution based on only
one moment does not even qualitatively capture the effect of changes in the distribution. As we already know from Section
6.2, adding higher moments greatly increases accuracy.

7. Conclusions

This paper has presented a new technique to solve models with a continuum of heterogeneous agents. The method
allows to keep track of the dynamics of the cross-sectional distribution in a precise way. This was achieved by
linearizing the model solution in the aggregate shocks, while maintaining the nonlinearity of the solution in the individual
shocks.

Several things remain to be done. First, to provide a theoretical analysis of the perturbation approach along the lines of
Jin and Judd (2002) or Judd (2004) for this class of models. Second, to carry the analysis on to higher order perturbations.
Third, to identify and to study plausible and relevant models where the high-dimensional representation of the distribution
function is essential to obtain a sufficient accuracy of the model.
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Appendix A. Asymptotic estimation of aggregate VAR

Assume the true model is

Yt ¼ AYt�1 þ B�t (A.1)

where the � is a vector of i.i.d. shocks. We think of Y as being a high-dimensional state vector, and want to estimate a VAR
in a lower-dimensional vector of statistics y, which is related to Y by

yt ¼ HYt (A.2)

with known matrix H. The estimated model is

yt ¼ Âyt�1 þ B̂�t þ ut (A.3)

The error term ut is supposed to capture the aggregation error. The normal equations for this model, which are equivalent
to the ML estimator are

1

T

XT

i¼1

yt½y
0
t�1 �

0
t� ¼

1

T

XT

i¼1

½Â B̂�
yt�1

�t

" #
½y0t�1 �

0
t � (A.4)

Using (A.2) and (A.1) we can write (A.4) as

1

T

XT

i¼1

HðAYt�1 þ B�tÞ½Y0t�1H0 �0t� ¼
1

T

XT

i¼1

½Â B̂�
HYt�1

�t

" #
½Y0t�1H0 �0t� (A.5)
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In the limit T !1, the means converge to their unconditional expectations, and we get

½HAE½YY0�H0 HBE½��0�� ¼ ½Â B̂�
HE½YY0�0H0 0

0 E½��0�

" #
(A.6)

E½YY0� is found by solving a discrete Lyapunov equation as in (49).
We apply this to the estimation problem of Section 6 by setting

yt ¼

mt �m�

log zt

tt � t�

2
64

3
75
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