Lecture Notes: Global Games

December 8, 2023

Introduction: Morris and Shin 1998

- \triangleright Study a general class of binary choice coordination games
- \triangleright Under complete information, this class of games admit multiple equilibria
- \blacktriangleright However, adding small heterogeneous information delivers a unique equilibrium

Multiple equilibria under common knowledge

 θ is common knowledge

 $0 < \theta < 1$ **Multiple Equilibria**

Figure 1: Common Knowledge

Model setting: attacking game

- \triangleright There is a measure one continuum of agents, indexed by $i \in [0, 1]$
- \blacktriangleright Each agent *i* chooses to attack or not attack:
	- \blacktriangleright a_i = 0 if not attack
	- \bullet a_i = 1 if attack
- \blacktriangleright The payoff from not attacking is normalized to zero.
- \triangleright The payoff from attacking is $1 c$ if the status quo is abandoned and a 'regime change ' occurs, and is $-c$ otherwise, with $c \in (0,1)$.
- \triangleright The status quo is abandoned and 'regime change' occurs iff $A > \theta$
	- \triangleright A denotes the mass of agents attacking
	- $\vdash \theta \in R$ is an exogenous fundamental parameterizing the strength of the regime

Payoff of agent

 \blacktriangleright Payoff of the agent

$$
U(a_i, A, \theta) = a_i(\mathbf{1}_{A > \theta} - c), \qquad (1)
$$

where $\mathbf{1}_{A>\theta}$ is an indicator of regime change, equal to 1 if $A > \theta$ and zero otherwise.

 \blacktriangleright Payoffs can be written as

$$
\mathbf{1}_{A > \theta} = 1 \quad \mathbf{1}_{A > \theta} = 0
$$

\n
$$
a_i = 1 \quad 1 - c \quad -c
$$

\n
$$
a_i = 0 \quad 0 \quad 0
$$

 \triangleright The actions of agents are strategic complements.

Complementarity

- It pays off for an agent to attack iff the status quo collapses
- \blacktriangleright The status quo collapses iff a sufficiently large fraction of agents attack
- \blacktriangleright The coordination motive is the key feature of the model
- \triangleright The incentive to attack increases with the mass of agents attacking

Common knowledge benchmark

- \blacktriangleright Assume θ is known
- \blacktriangleright The best response of any agent is

$$
BR(A, \theta) = \begin{cases} 1, & \text{if } A > \theta \\ 0, & \text{if } A \le \theta \end{cases} \tag{2}
$$

- Eet $\theta = 0$ and $\bar{\theta} = 1$. Under common knowledge, we have the following
	- 1. For $\theta < \theta$, fundamentals are week, and $a_i = 1$ is a dominant strategy
	- 2. For $\theta > \bar{\theta}$, fundamentals are strong, and $a_i = 0$ is a dominant strategy.
- ► Now consider $\theta \in (\underline{\theta}, \bar{\theta})$, there are multiple equilibria: both $A = 1$ and $A = 0$ are equilibria.
	- \blacktriangleright Each equilibrium is sustained by self-fulfilling expectations

Interpretation and applications

\triangleright Self-fulfilling currency crises (Obstfeld, 1986)

- \triangleright Central bank is interested in maintaining a currency peg
- \triangleright A large number of speculators, with finite wealth, deciding whether to attack the currency or not.
- \triangleright Self-fulfilling bank runs (Diamond and Dybvig, 1983)
	- \triangleright Depositors decide whether or not to withdraw their deposits
	- \triangleright θ represents the liquid resources available to the bank

Incomplete and asymmetric information

- **Assume** θ **is not common knowledge**
- Agents have a common prior over θ , let it be improper uniform over the real line
- \triangleright Each agent receives an exogenous private signal

$$
x_i = \theta + \xi_i \tag{3}
$$

and an exogenous public signal

$$
z = \theta + \epsilon \tag{4}
$$

where $\xi_i \sim \mathcal{N}(0,\sigma^2_\mathsf{x})$ is idiosyncratic noise and $\epsilon \sim \mathcal{N}(0,\sigma^2_\mathsf{z})$ is a common error.

 \blacktriangleright Let $\alpha_{\mathsf{x}} = 1/\sigma_{\mathsf{x}}^2$ and $\alpha_{\mathsf{z}} = 1/\sigma_{\mathsf{z}}^2$ denote the precisions of the private and public signals, respectively.

Symmetric Bayesian equilibrium definition

An equilibrium is a strategy $a(x, z)$ and an aggregate attack $A(\theta, z)$ such that

$$
a(x, z) \in \text{argmax} \mathbb{E}[U(a, A(\theta, z), \theta)|x, z]
$$

$$
A(\theta, z) = \int a(x, z) \phi(\sqrt{\alpha_x}(x - \theta)) dx
$$

where $\phi(\cdot)$ is the PDF of the standard Normal. Technical note: where $\phi(\tau)$ is the FBT of the standard Normal. Tech
 $x_i \sim N(\theta, \sigma_x^2)$ implies $\frac{x_i-\theta}{\sigma_x} = \sqrt{\alpha_x}(x-\theta) \sim N(0, 1)$.

Equilibrium analysis

- \triangleright We consider monotone (or threshold) equilibria: equilibria in which $a(x, z)$ is monotonic in x.
- \triangleright Attack decision: in a monotone equilibrium, for any realization of z, there is a threshold $x^*(x)$ such that agents attack iff

$$
x\leq x^{\ast}(z)
$$

 \triangleright Regime switch condition: by implication, the aggregate size of the attack is decreasing in θ , so that there is also a threshold $\theta^*(z)$ such that the status quo is abandoned iff

$$
\theta \leq \theta^*(z)
$$

 \triangleright A monotone equilibrium is therefore identified by the threshold functions of x^* and θ^* .

Stpe 1: Characterize θ^* for a given x^*

For a given realizations of θ and z, the aggregate size of attack is given by the mass of agents who receive signals $x \leq x^*$. Thus

$$
A(\theta, z) = \Phi(\sqrt{\alpha_x}(x^*(z) - \theta))
$$
 (5)

where $\Phi(\cdot)$ is the CDF of the standard Normal.

 \blacktriangleright Notice $A(\theta, z)$ is decreasing in θ , so that regime change occurs iff $\theta < \theta^*(x)$ where $\theta^*(z)$ is the unique solution to

$$
A(\theta^*(z),z)=\theta^*(z)\Longleftrightarrow \Phi(\sqrt{\alpha_x}[x^*(z)-\theta^*(z)])=\theta^*(z)
$$

Solving this for $x^*(z)$ we obtain

$$
x^*(z) = \theta^*(z) + \frac{1}{\sqrt{\alpha_x}} \Phi^{-1}(\theta^*(z)) \tag{6}
$$

Stpe 1: Characterize θ^* for a given x^*

Figure 2: Threshold value θ^*

Step 2: Characterize x^* for given θ^*

► Given that regime change occurs iff $\theta \leq \theta^*(z)$, the payoff of an agent is

$$
\mathbb{E}[U(a, A(\theta, z), \theta)|x, z] = a(Pr[\theta \leq \theta^*(z)|x, z] - c)
$$
 (7)

 \triangleright Given his signal, the posterior of the agent is

$$
\theta | x, z \sim N(\frac{\alpha_x}{\alpha_x + \alpha_z} x + \frac{\alpha_z}{\alpha_x + \alpha_z} z, \frac{1}{\alpha_x + \alpha_z})
$$
(8)

Let $\alpha \equiv \alpha_{x} + \alpha_{z}$ denote the precision of this posterior.

 \triangleright The posterior probability of regime change is

$$
Pr[\theta \le \theta^*(z)|x, z] = \Phi\left(\sqrt{\alpha}\left(\theta^*(z) - \frac{\alpha_x}{\alpha_x + \alpha_z}x - \frac{\alpha_z}{\alpha_x + \alpha_z}z\right)\right)
$$

$$
= 1 - \Phi\left(\sqrt{\alpha}\left(\frac{\alpha_x}{\alpha_x + \alpha_z}x + \frac{\alpha_z}{\alpha_x + \alpha_z}z\right) - \theta^*(z)\right)
$$

which is decreasing in x .

Step 2: Characterize x^* for given θ^*

It follows that the agents attacks iff $x \leq x^*(z)$ solves indifferent condition

$$
0 = a(Pr[\theta \leq \theta^*(z)|x, z] - c)
$$
\n(9)

This implies

$$
Pr[\theta \leq \theta^*(z)|x, z] = c \tag{10}
$$

Thus we obtain

$$
\Phi\left(\sqrt{\alpha}\left(\frac{\alpha_x}{\alpha_x+\alpha_z}x^*(z)+\frac{\alpha_z}{\alpha_x+\alpha_z}z\right)-\theta^*(z)\right)=1-c\quad(11)
$$

which solves the unique $x^*(z)$.

Stpe 2: Characterize x^* for a given θ^*

Figure 3: Threshold value x^*

Step 3: Combine two equilibrium conditions

Combine [\(6\)](#page-11-0) and [\(11\)](#page-14-0) to get one equilibrium condition. Substituting (6) into (11) we get

$$
\Phi\left(\sqrt{\alpha}\left(\frac{\alpha_x}{\alpha}\left[\theta^*(z) + \frac{1}{\sqrt{\alpha_x}}\Phi^{-1}(\theta^*(z))\right] + \frac{\alpha_z}{\alpha}z\right) - \theta^*(z)\right) = 1 - c
$$

$$
\frac{\alpha_x}{\alpha}\left[\theta^*(z) + \frac{1}{\sqrt{\alpha_x}}\Phi^{-1}(\theta^*(z))\right] + \frac{\alpha_z}{\alpha}z - \theta^*(z) = \frac{1}{\sqrt{\alpha}}\Phi^{-1}(1 - c)
$$

$$
\frac{\alpha_z}{\alpha}(z - \theta^*(z)) + \frac{\sqrt{\alpha_x}}{\alpha}\Phi^{-1}(\theta^*(z)) = \frac{1}{\sqrt{\alpha}}\Phi^{-1}(1 - c)
$$

Finally, the one equilibrium condition becomes

$$
\frac{\alpha_z}{\sqrt{\alpha_x}}(z-\theta^*(z)) + \Phi^{-1}(\theta^*(z)) = \sqrt{\frac{\alpha}{\alpha_x}}\Phi^{-1}(1-c)
$$
 (12)

Equilibrium

Proposition 1

A monotone equilibrium in this game is characterized by thresholds $\theta^{*}(z)$ and $x^{*}(z)$ such that

(i) $\theta^*(z)$ is given by $G(\theta^*(z), z) = g$ (13)

where
$$
g = \sqrt{\frac{\alpha_x + \alpha_z}{\alpha_x}} \Phi^{-1}(1 - c)
$$
 is a constant, and

$$
G(\theta, z) = \frac{\alpha_z}{\sqrt{\alpha_x}}(z - \theta) + \Phi^{-1}(\theta)
$$

(ii) $x^*(z)$ is given by

$$
x^*(z)=\theta^*(z)+\frac{1}{\sqrt{\alpha_\mathsf{x}}}\mathsf{\Phi}^{-1}(\theta^*(z))
$$

Existence of equilibrium

- \triangleright We establish existence of equilibrium by considering the properties of function G.
- For every $z \in \mathbb{R}$, $G(\theta, z)$ is continuous in θ .

$$
G(\underline{\theta}, z) = \frac{\alpha_z}{\sqrt{\alpha_x}}(z - 0) + \Phi^{-1}(0) = -\infty
$$

$$
G(\overline{\theta}, z) = \frac{\alpha_z}{\sqrt{\alpha_x}}(z - 1) + \Phi^{-1}(1) = +\infty
$$

 \blacktriangleright Thus, there exists a solution and any solution satisfies $\theta^*(z) \in (\underline{\theta}, \overline{\theta}).$

Equilibirum: uniqueness or multiplicity?

Note that

$$
\frac{\partial G(\theta, z)}{\partial \theta} = -\frac{\alpha_z}{\sqrt{\alpha_x}} + \frac{1}{\phi(\Phi^{-1}(\theta))}
$$

We know that $\textit{max}_{\omega \in \mathbb{R}}\phi(\omega)=\frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}$, thus $\textit{min} \frac{1}{\phi(\Phi^{-1}(\theta))} =$ √ 2π . (Technical note: $\phi(\omega) = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}$ exp $\frac{1}{2}\omega^2$)

- 1. If $\frac{\alpha_z}{\sqrt{\alpha_x}}$ < $\sqrt{2\pi}$, then $\frac{\partial G(\theta,z)}{\partial \theta} > 0$. Unique solution to [\(13\)](#page-17-0). √
- 2. If $\frac{\alpha_z}{\sqrt{\alpha_x}}$ > 2 π , then G is non-monotonic in $\theta.$ There is an interval $z \in (z, \bar{z})$ such that [\(13\)](#page-17-0) admits multiple solutions to $\theta^*(z)$ whenever, $z \in (\underline{z}, \overline{z})$, and a unique solution otherwise.

We conclude that monotone equilibrium is unique iff

$$
\frac{\alpha_z}{\sqrt{\alpha_x}} < \sqrt{2\pi}
$$

Proposition 2 (Morris and Shin)

There always exists a monotone equilibrium. It is unique if and only if private noise is small enough relative to the public noise,

$$
\frac{\sigma_{\mathsf{x}}}{\sigma_{\mathsf{z}}^2} \leq \sqrt{2\pi}
$$

Otherwise, there is an interval of z such that there are three different pairs (x^*, θ^*) that define monotone equilibria.

Limits

Proposition 3 (Morris and Shin Limit)

As either

(i) $\sigma_x \rightarrow 0$, for given σ_z , or

(ii) $\sigma_z \rightarrow \infty$, for given σ_x

there is a unique monotone equilibrium in which regime change occurs iff $\theta \leq \hat{\theta}$ where $\hat{\theta} \equiv 1 - c \in (\theta, \bar{\theta})$.

Proof.

Take the limit of both sides of [\(13\)](#page-17-0).

Discontinuity around perfect information

- \triangleright We know that when information is perfect $(\sigma_x = 0)$ there exists multiple equilibria and any regime outcome is possible.
- \blacktriangleright However, for an arbitrarily small perturbation away from perfect information, the regime outcome is uniquely pinned down.
- \triangleright Crises, then, defined as situations displaying high non-fundamental volatility, cannot be addressed in the limit as private information becomes arbitrarily precise ($\sigma_x \rightarrow 0$), since there the regime outcome is dictated only by fundamentals, that is, θ .
- **Furthermore, note that the outcome is only a function of** θ **.** and independent of z, which means that all volatility is fundamentals driven.
- \blacktriangleright In conclusion, Morris and Shin show us that in these coordination games, multiplicity is the unintended consequences of common knowledge.

Reference

- ▶ Morris, S., & Shin, H. S. (1998). Unique equilibrium in a model of self-fulfilling currency attacks. American Economic Review, 587-597.
- ▶ Morris, S., & Shin, H. S. (2001). Global games: Theory and applications.
- ▶ Morris, S., & Shin, H. S. (2004). Coordination risk and the price of debt. European Economic Review, 48(1), 133-153.
- ► Goldstein, I., & Pauzner, A. (2005). Demand–deposit contracts and the probability of bank runs. the Journal of Finance, 60(3), 1293-1327.