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Bayesian Statistics
Frequentist Probability and Subjective Probability

In statistics, there is a distinction between two concepts of probability,
frequentist probability and subjective probability.
Frequentists restrict the assignment of probabilities to statements
that describe the outcome of an experiment that can be repeated.

Example
A coin tossed three times will come up heads either two or three times.
We can imagine repeating the experiment of tossing a coin three times
and recording the number of times that two or three heads were reported.

Pr(A1) = lim
n−→∞

number of times two or three heads coocurs
n

.
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Bayesian Statistics
Frequentist Probability and Subjective Probability

Fact
Those who take the subjective view of probability believe that
probability theory is applicable to any situation in which there is
uncertainty.

Outcomes of repeated experiments fall in that category, but so do
statements about tomorrow’s weather, which are not the outcomes of
repeated experiments.

Calling probabilities ’subjective’does not imply that they can be set
arbitrarily, and probabilities set in accordance with the axioms are
consistent.
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Bayesian Statistics
Frequentist Probability and Subjective Probability

Example
(Subjective view of probability) Let Y a binary variable with Y = 1 if a
coin toss results in a head and 0 otherwise, and let

Pr (Y = 1) = θ

Pr (Y = 0) = 1− θ

which is assummed to be constant for each trial. In this model, θ is a
parameter and the value of Y is the data (realisation y).

From the frequentist point of view, probability theory can tell us
something about the distribution of the data for a given θ.

It is not given a probability distribution of θ, since it is not regarded
as being the outcome of a repeated expriment.
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Bayesian Statistics
Frequentist Probability and Subjective Probability

In a frequentist approach, the parameters θ are considered as
constant terms and the aim is to study the distribution of the data
given θ, through the likelihood of the sample.

The likelihood of the sample (y1, · · · yn) is

Ln (θ; y1, · · · , yn) =
n

∏
i=1

θyi (1− θ)1−yi .

From the subjective point of view, however, θ is an unknown
quantity.
Since there is uncetainty over its value, it can be regarded as a
random variable and assigned a prior distribution.

Before seeing the data, it is assigned a prior distribution

π (θ) with 0 ≤ θ ≤ 1.
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Prior and posterior distribution
Prior distribution

Definition
Prior distribution In a Bayesian framework, the parameters θ associated
to the distribution of the data, are considered as random variables. Their
distribution is called the prior distribution and is denoted by π (θ).

In most of cases, the prior distribution is parametrised, i.e. the pdf
π (θ;γ) depends on a set of parameters γ where γ are the
parameters of the prior distribution, called hypeparameters.
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Prior and posterior distribution
Prior distribution

Example
(Hyperparameters) If θ ∈ R and if the prior distribution is normal

π (θ;γ) =
1

σ
√
2π

exp

(
− (θ − µ)2

2σ2

)

with γ =
(
µ, σ2

)
the vector of hyperparameters.
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Prior and posterior distribution
Prior distribution

Example

(Beta prior distribution) If θ ∈ [0, 1], a common (parametrised) prior
distribution is the Beta distribution denoted B (α, β).

π (θ;γ) =
Γ (α+ β)

Γ (α) Γ (β)
θα−1 (1− θ)β−1 α,β > 0 θ ∈ [0, 1]

with γ = (α, β)T the vector of hyper parameters.

Depending on the choice of α and β, this prior can capture beliefs that
indicate θ is centered at 1/2, or it can shade θ toward zero or one.
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Prior and posterior distribution
Posterior distribution

Definition
(Posterior distribution) Bayesian inference centers on the posterior
distribution π (θ|y), which is the conditional distribution of the random
variable θ given the data (realisation of the sample) y = (y1, . . . yn).

θ| (Y1 = y1, . . .Yn = yn) ∼ posterior distrbution

Theorem
(Bayes Theorem) For events A and B, the conditional probability of event
A and given that B has occurred is

Pr (A|B) = Pr (B |A)× Pr (A)
Pr (B)
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Prior and posterior distribution
Posterior distribution

Definition
For one observation yi , the posterior distribution is the conditional
distribution of θ given yi , defined as to be

π (θ|yi ) =
fYi |θ (yi |θ)× π (θ)

fYi (yi )

where
fYi (yi ) =

∫
Θ
fYi |θ (yi |θ)× π (θ) dθ

and Θ the support of the distribution of θ, where the term fYi |θ (yi |θ)
corresponds to the likelihood of the observation yi ,

fYi |θ (yi |θ) = Li (θ; yi ) .
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Prior and posterior distribution
Posterior distribution

Definition
(Posterior distribution, sample) For sample (y1, . . . , yn), the posterior
distribution is the conditional distribution of θ given yi , defined as to be

π (θ|y1, . . . , yn) =
Ln (θ; y1, . . . , yn)× π (θ)

fY1,...Yn (y1, . . . yn)

where Ln (θ; y1, . . . , yn) is the likelihood of the sample and

fY1,...Yn (y1, . . . yn) =
∫

Θ
Ln (θ; y1, . . . , yn)× π (θ) dθ

and Θ the support of the distribution of θ.
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In this setting, the data (y1, . . . yn) are viewed as constants whose
marginal distributions do not involve the parameters of interest θ,
that is

fY1,...Yn (y1, . . . yn) = constant.

Definition
(Unormalised posterior distribution) The unormalised posterior
distribution is the product of the likelihood of the sample and the prior
distribution:

π (θ|y1, . . . , yn) ∝ Ln (θ; y1, . . . , yn)× π (θ)

or with simplified form

π (θ|y) ∝ Ln (θ; y)× π (θ)

where the symbol "∝" means "is proportional to".
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Prior and posterior distribution
Posterior distribution

Example

(Beta distribution) Consider an i .i .d. sample (Y1, . . .Yn) of binary
variables, such that Yi ∼ Be (θ) and:

fYi (yi ; θ) = Pr (Yi = yi ) = θyi (1− θ)1−yi ,

We assume that the uninformative prior distribution for θ is an Beta
B (α, β) with a pdf

π (θ;γ) =
Γ (α+ β)

Γ (α) Γ (β)
θα−1 (1− θ)β−1 α, β > 0 θ ∈ [0, 1]

with γ = (α, β)T the vector of hyperparameters.
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Prior and posterior distribution
Posterior distribution

Example

(Beta distribution, cont) The likelihood of the sample (y1, . . . , yn) is

Ln (θ; y1, . . . , yn) = θ∑ yi (1− θ)∑(1−yi ) ,

hence the unormalised posterior distribution is

π (θ|y1, . . . , yn) ∝ Ln (θ; y1, . . . , yn)× π (θ)

= θ∑ yi (1− θ)∑(1−yi ) Γ (α+ β)

Γ (α) Γ (β)
θα−1 (1− θ)β−1

∝ θ∑ yi (1− θ)∑(1−yi ) θα−1 (1− θ)β−1

= θ(α+∑ yi )−1 (1− θ)(β+∑(1−yi ))−1 .
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Prior and posterior distribution
Posterior distribution

Example
(Beta distribution, cont) Recall that the pdf of a Beta distribution is

Γ (α+ β)

Γ (α) Γ (β)
θα−1 (1− θ)β−1 .

The posterior distribution is in the form of a Beta distribution with
parameters

α1 = α+∑ yi β1 = β+ n−∑ yi .

This is an example of a conjugate prior, where the posterior distribution
is in the same family as the prior distribution.
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Prior and posterior distribution
Posterior distribution

Example
(Beta distribution, cont) Note that

E (θ|y1, . . . , yn) =
α1

α1 + β1
=

α+∑ yi
α+ β+ n

which can be expressed as a function of the MLE estimator
ȳn = n−1 ∑N

i=1 yi as follows

E (θ|y1, . . . , yn)︸ ︷︷ ︸
posterior mean

=
α1

α1 + β1
=

α

α+ β+ n
+

∑ yi
α+ β+ n

=
α+ β

α+ β+ n
α

α+ β︸ ︷︷ ︸
prior mean

+
n

α+ β+ n
ȳn︸︷︷︸
MLE

.

WHU (Institute) Bayesian Econometrics 22/12 16 / 35



Prior and posterior distribution
Posterior distribution

If n −→ ∞, then the weight on the prior mean approaches zero, and
the weight on the MLE approaches one, implying

lim
n−→∞

E (θ|y1, . . . , yn) = ȳn.

If the sample size is very small, n −→ 0, then we have

lim
n−→0

E (θ|y1, . . . , yn) =
α

α+ β
.

Bayesian updating

π (θ|y1, y2) ∝ f (y1, y2|θ)π (θ) = f (y2|y1, θ)π (θ|y1)

As new information is required, the posterior distribution becomes the
prior for the next experiment.
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Prior and posterior distribution
Posterior distribution - some intuition of prior

α can be interpreted as "the number of heads obtained in the
expriment on which the prior is based".

If, for example, you had seen this coin tossed a large number of times
and heads appeared frequently, we can set a large number of α.

α = β = 1 yields uniform distribution which indicates that both head
and tail can appear but otherwise have no strong opnion about the
distribution of θ.
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Simulation
Classical Simulation – Probability Integral Transform Method

In many cases, although we can always get the analytical form of the
posterior density up to a constant, the characteristic of the density,
such as mean, variance, median, are not easy to compute.
Generate random sample from the posterior distribution to
approximate these characteristics, such as the posterior mean

Ê (θ) =
1
M

M

∑
m=1

θ(m), m = 1, 2, 3, . . .M

where θ(m) is the random sample from the posterior density π (θ|y).
Monte Carlo - draw the random samples identically and
independently.
Markov Chain Monte Carlo - draw the random samples
dependently.
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Simulation
Monte Carlo – Probability Integral Transform Method

Suppose we wish to draw a sample of values from a random variable
with d.f. F (·) which is nondecreasing.
Consider the distribution Z , which is obtained by drawing U from
U (0, 1) and setting Z = F−1 (U), then U = F (Z )

P (Z ≤ z) = P (F (Z ) ≤ F (z)) = P (U ≤ F (z)) = F (z) .

Probability integral transform method:
1 Draw u from U (0, 1).
2 Return y = F−1 (u) as a draw from f (y).

Requires that F (·) be known (including constant) and F−1 (·) can be
readily computed.
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Simulation
Monte Carlo – Accepted-Reject Algorithm

f (·) is diffcult to simulate but it is possible to simulate values from
g (·) and a number c ≥ 1 can be found such that f (Y ) ≤ cg (Y ) for
all Y in the support of f (·).
Accepted-Reject Algorithm

1 Generate a value y from g (·) .
2 Draw a value u from U (0, 1) .
3 Return y as a draw from f (·) if u ≤ f (y) /cg (y). If not, reject it and
return to step 1.

The density f (·) is only need to be known up to a constant.
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Simulation
Monte Carlo – Accepted-Reject Algorithm

Proof.
Consider the distribution of the accepted values of y ,
h [y |u ≤ f (y) /cg (y)], we have

h [y |u ≤ f (y) /cg (y)] =
P [u ≤ f (y) /cg (y)] g (y)∫
P [u ≤ f (y) /cg (y)] g (y) dy

=
f (y) /cg (y) g (y)∫
f (y) /cg (y) g (y) dy

= f (y)

Note that ∫
P [u ≤ f (y) /cg (y)] g (y) dy = 1/c

is the probality that a generated value of y is accepted.
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Simulation
Monte Carlo

MC methods are not easy to implemented in multivariate case.

For AR method, it is diffi cult to find a suitable g (·).
A sequence X1, X2, · · · of random variables is called Markov Chain
if the conditional distribution of Xn+1 given X1, · · · ,Xn depends on
Xn only

P (Xn+1|Xn, · · · ,X1) = P (Xn+1|Xn) ,
for instance, the AR(1) proess.

Markov Chain Monte Carlo (MCMC) is a class of algorithms that
produce a chain of simulated draws from a distribution where each
draw is dependent on the previous draw.
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Simulation
Monte Carlo - Finite Sample Space

A stochastic process Xt , takes the values in the finite set
S = {1, 2, . . . , s}.
Define pij as the probability that Xt+1 = j given that Xt = i

pij = P (Xt+1 = j |Xt = i) , i , j ∈ S

which is called transition probability, ∑S
j=1 pij = 1.

The probability distribution at time t + 1 only depends on the system
at t is called the Markov property, and the resulting process is a
Markov process.
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Simulation
MCMC - Finite Sample Space - Transition probability matrix

Irreducible: starting from state i , the process can reach any other
state with positive probability, a counter example

P =
[
P1 0
0 P2

]
where P1, P2 are m×m, strating from the first m states, it will never
arrive the second m states.

Aperiodic: starting from state i , the process can return ith state in
one period, a counter example

P =
[
0 P1
P2 0

]
where strarting from the first m states, it takes 2 periods to return.
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Simulation
MCMC - Finite Sample Space - Invariant Distribution

Invariant distribution: The probability distribution
π∗ = (π∗1,π

∗
2, . . . π∗s )

′ is an invariant distribution for P if π′ = π′P.

Example

If we set P =
(
0.75 0.25
0.125 0.875

)
, from π∗′ = π∗′P, we have

(π∗1,π
∗
2) = (π

∗
1,π

∗
2)

(
0.75 0.25
0.125 0.875

)
,

the solution is π∗′ = (1/3, 1/2).
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Simulation
MCMC - Finite Sample Space - Invariant Distribution

Theorem
Suppose S is finite and pij > 0 for all i , j . Then there exists a unique
probability distribution π∗j , j ∈ S, such that ∑i π∗i pij = π∗j for all
j ∈ S .Moreover, ∣∣∣p(n)ij − π∗j

∣∣∣ ≤ rn,
where 0 < r < 1, for all i , j and n ≥ 1.

For large enough n, the initial state i plays almost no role.

Pn converges quickly to a matrix whose rows are all π∗′.

If a Markov Chain satisfy some conditions, the probability distribution
of its nth iterate is very close to its invariant distribution for large n.
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Simulation
MCMC - Finite Sample Space - Invariant Distribution

If we can find a Markov process for which the invariant
distribution is the target distribution, we can simulate draws
from the process to generate values from the target
distribution.

Theorem
Let P be irreducible and aperiodic over a finite state space. Then there is
a unique probability distribution π∗ such that ∑i π∗i pij = π∗j for all j ∈ S
and ∣∣∣p(n)ij − π∗j

∣∣∣ ≤ rn/v ,

for all i , j ∈ S, where 0 < r < 1, for some positive integer v .
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Simulation
Markov Chain Monte Carlo

Definition

Transition Kernel: K : S × S −→ R+0 :

P (Xt+1 ∈ A|Xt = xt ) =
∫
A
K (xt+1|xt ) dxt+1

for A ∈ S .

Definition
Invariant distribution: A distribution µ with density function fµ is said to
be the invariant distribution of a Markov chain X with transition kernel K
if

fµ (y) =
∫
S
fµ (x)K (y |x) dx

for almost all y ∈ S .
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Simulation
Markov Chain Monte Carlo

Example
(MCMC, Simple example) Suppose we want to sample from the following
distribution

π (θ) =
1√
2π

√
1− φ2

σ2
exp

(
−
(
1− φ2

)
(θ − µ/ (1− φ))2

2σ2

)

where |φ| < 1 and pretend that we do not know how to draw i.i.d.
samples from this distribution which means that the target ditribution is
N
(
µ/ (1− φ) , σ2/

(
1− φ2

))
.
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Simulation
Markov Chain Monte Carlo

Example
(MCMC, simple example, cont) Then suppose we use the following
transition kernel to generate draws

q (θt |θt−1) =
1√
2πσ

exp

(
− (θt − µ− φθt−1)

2

2σ2

)
,

that is θt belonging to an AR (1) process

θt = µ+ φθt−1 + εt

where εt ∼ N
(
0, σ2

)
. We can show that π (θ) is the invariant distribution

of q (θt |θt−1).
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Simulation
Markov Chain Monte Carlo

Example
(MCMC, simple example, cont) If θt−1 is sampled from the target
ditribution θt−1 ∼ N

(
µ/ (1− φ) , σ2/

(
1− φ2

))
, then we can easily get

that
θt = φθt−1 + εt , εt ∼ N

(
0, σ2

)
,

hence
θt ∼ N

(
µ/ (1− φ) , σ2/

(
1− φ2

))
since

E (θt ) = φE (θt−1) + E (εt ) = µ/ (1− φ)

Var (θt ) = φ2Var (θt−1) + Var (εt ) = σ2/
(
1− φ2

)
.

Hence π is the invariant distribution of q (θt |θt−1).
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Simulation
Markov Chain Monte Carlo - Gibbs Sampling

Gibbs sampling was proposed in the early 1990s (Geman and Geman,
1984; Gelfand and Smith, 1990) and fundamentally changed Bayesian
computing.

Gibbs sampling is attractive because it can sample from
high-dimensional posteriors.

The main idea is to break the problem of sampling from the
high-dimensional joint distribution into a series of samples from
low-dimensional conditional distributions.

Because the low-dimensional updates are done in a loop, samples are
not independent as in rejection sampling.

The dependence of the samples turns out to follow a Markov
distribution, leading to the name Markov chain Monte Carlo (MCMC).
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Simulation
Markov Chain Monte Carlo - Gibbs Sampling

Gibbs Sampling is used to find the transition kernal which based on
the condition that it is possible to sample from each conditional
distribution.
Gibbs algorithm with two blocks

1 Choose a starting value x (0)2 .
2 At the first iteration, draw

x (1)1 from f
(
x1 |x (0)2

)
,

x (1)2 from f
(
x2 |x (1)1

)
.

3 At the gth iteration, draw

x (g )1 from f
(
x1 |x (g−1)2

)
,

x (g )2 from f
(
x2 |x (g−1)1

)
.
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Simulation
Markov Chain Monte Carlo - Gibbs Sampling

The Gibbs kernel is

p (x , y) = f (y1|x2) f (y2|y1) ,

from which we can compute∫
p (x , y) f (x) dx =

∫
f (y1|x2) f (y2|y1) f (x1, x2) dx1dx2

= f (y2|y1)
∫
f (y1|x2) f (x1, x2) dx1dx2

= f (y2|y1) f (y1) = f (y1, y2) .

hence f (·) is the invariant distribution for the Gibbs kernel.
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