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What is Dynare?

Dynare is a Matlab frontend to solve and simulate dynamic models

Either deterministic or stochastic

Developed by Michel Juillard at CEPREMAP

website: http://www.cepremap.cnrs.fr/dynare/
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How does it work?

Write the code of the model

Takes care of parsing the model to Dynare

Rearrange the model

Solves the model

Use the solution to generate some output

Can estimate the model
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Structure of the mod file: Simulation

Preamble: Define variables and parameters

Model: Equations of the model

Steady State: Compute the steady state

Shocks: Define the properties of Shocks

Solution: Compute the Solution and Product Output
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Structure of the mod file: Preamble

In this part, we need to define endogenous variables, shocks and
parameters by three commands var, varexo and parameters.

VAR: define the endogenous variables of your model
VAREXO: define the list of shocks in your model
PARAMETERS: define the list of parameters and then assign the
parameters values.

Assume the model takes the form

xt = ρxt−1 + et

with et ∼ N
(
0, σ2

)
.

Variable is xt , exogenous variables is et and parameters are ρ and σ.
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Structure of the mod file: Preamble
Motivated Example: Match

In practice, we always want to know wether our model match data

The model takes the form

xt = ρxt−1 + et

with et ∼ N
(
0, σ2

)
.

We compute the sample moments such as mean, variance and
covariance of the data.

Then we compute the theoretical moments of the model.

Compare the sample moments with the theoretical moments.

Here we simulate data from the model, treat the simulated data as
real data and compute the moments such as mean, variance and
covariance.
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Structure of the mod file: Preamble
An example

The dynare code for the Preamble part

var x;
varexo e;

parameters rho,se;
rho = 0.90;
se = 0.01;
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Structure of the mod file: Model
An example

In the model block, we need to define model equations using
"model;" and "end;"

Model the AR(1) processes as
model;
x=rho*x(-1)+e;
end;

Between the command model and end, there need to be as many
equations as you declared endogenous variables in the var part.
Each line of instruction ends with a semicolon.

Variable with a time t subscript, such as xt ,is written as x .

Variable with a time t-n subscript, such as xt−n, is written as x (−n).
Variable with a time t+n subscript, such as xt+n, is written as x (+n).
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Structure of the mod file: Steady State

Compute the long—run of the model which is the deterministic value
that the dynamic system will converge to.

We will take appximation around this long run.

The structure is as follows

inival;
· · ·
end;
steady;
check;

Steady computes the long run of the model using a non—linear
New-type solver.

It therefore needs initial conditions. That is the role of the
inival ;· · · end ; statement. Note that if the inival block is not followed
by steady, the steady state computation will still be triggered by
subsequent commands (stoch_simul, estimation,...).
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Structure of the mod file: Steady State

You would better give a initial value close to the exact steady state.

histval;...end; block allows setting the starting point of those
simulations in the state space (it does not affect the starting point for
impulse response functions).
histval;
x(0)=0;
end;

check is optional. It checks the dynamic stability of the system by BK
condition. It computes and displays the eigenvalues of the system. A
necessary conditions for the uniqueness of a stable equilibrium in the
neighborhood of the steady state is that there are as many
eigenvalues larger than 1 in modulus as there are forward looking
variables in the system.
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Structure of the mod file: Steady State

Again take the AR(1) example:

xt = ρxt−1 + et

In deterministic steady state: et = ē = 0, therefore

x̄ = ρx̄ =⇒ x̄ = 0

Hence
initival
e = 0
x = 0
end;
steady;
check;
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Structure of the mod file: Shocks

Exogenous shocks are gaussian innovations with 0 mean.

Structure:
shocks;
var ...;
stderr ...;

Therefore, for the AR(1) example
shocks;
var e;
stderr se;
end;
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Structure of the mod file: Solution

Final step: Compute the solution and produce some output

Solution method: First or Second order perturbation method

Then compute some moments and impulse responses.

Getting solution: stoch_simul(...)...;

Again take the AR(1) example: xt = ρxt−1 + et
Therefore (because the model is linear): stoch_simul(linear);

SEM (Institute) Short Couse 04/28 13 / 68



Structure of the mod file: Solution
Options of the stoch_simul

Solver

linear: In case of a linear model.
order = 1 or 2 : order of Taylor approximation (default = 2), unless
you are working with a linear model in which case the order is
automatically to 1.

Output (prints everything by default)

noprint: cancel any printing.
nocorr : doesn’t print the correlation matrix.
nofunctions: doesn’t print the approximated solution.
nomoments: doesn’t print moments of the endogenous variables.
ar = INTEGER: Order of autocorrelation coeffi cients to compute,
default is 5.
hp_filter = DOUBLE: Using HP filter to the model for theoretical
moments (if periods=0) and the simulated moments.
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Structure of the mod file: Solution
Options of the stoch_simul

Impulse Response Functions

irf = INTEGER : number of periods on which to compute the IRFs
(Setting IRF=0, suppresses the plotting of IRFs). Default is 40.
relative_irf requests the computation of normalized IRFs in percentage
of the standard error of each shock.

Simulations

periods = INTEGER: specifies the number of periods to use in
simulations (default = 0). Dynare’s default is to produce
analytical/theoretical moments of the variables.
Having periods not equal to zero will instead have it simulate data and
take the
moments from the simulated data.
replic = INTEGER: number of simulated series used to compute the
IRFs (default = 1 if order = 1, and 50 otherwise).
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Structure of the mod file: Solution
Options of the stoch_simul

Simulations

drop = INTEGER : number of points dropped in simulations (default =
100). By default, Dynare drops the first 100 values from a simulation,
so you need to give it a number of periods greater than 100 for this to
work. Hence, typing “stoch simul(periods=300);”will produce
moments based on a simulation with 200 periods.
set_dynare_seed (INTEGER): set the random seeds

To run a Dynare file, simply type "dynare filename" into the
command window while in Matlab. For e.g.: "dynare *.mod"
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Structure of the mod file: Some tips
Log-linearized: Neoclassical example

Dynare obtains linear approximations to the policy functions that
satisfy the first-order conditions.

State variables: xt = [x1t , x2t , · · · , xnt ]′

The endogenous variable can be expressed as

yt = ȳ + a (xt − x̄)

where a bar above a variable indicates steady state value.
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Structure of the mod file: Some tips
Neoclassical example

Specification of the model in level

max
{ct ,kt}∞

t=1

E
∞

∑
t=1

βt−1
c1−vt − 1
1− v

ct + kt+1 = ztkα
t−1 + (1− δ) kt−1

zt = (1− ρ) + ρzt−1 + εt

k0 given, Et (εt+1) = 0 and Et
(
ε2t+1

)
= σ2

Model equations

c−vt = Et
[
βc−vt+1

(
αzt+1kα−1

t + 1− δ
)]

ct + kt = ztkα
t−1 + (1− δ) kt−1

zt = (1− ρ) + ρzt−1 + εt
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Structure of the mod file: Some tips
Neoclassical example

xt = [kt−1, zt ], yt = [ct , kt , zt ]

Linearized solution

ct = c̄ + ack (kt−1 − k̄) + acz (zt − z̄) (1)

kt = k̄ + akk (kt−1 − k̄) + akz (zt − z̄) (2)

zt = ρzt−1 + εt (3)

Dynare does not understand what ct is, it only generates a linear
solution in what you specify as the variables.
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Structure of the mod file: Some tips
Neoclassical example

The equation (2) and (3) can of course be written (less conveniently)
as

kt = k̄ + akk (kt−1 − k̄) + akz−1 (zt−1 − z̄) + akz εt

zt = ρzt−1 + εt

by substituting (3) into (2) with akz−1 = ρakz .

Dynare gives the solution in the less convenient form

ct = c̄ + ack (kt−1 − k̄) + acz−1 (zt−1 − z̄) + acz εt

kt = k̄ + akk (kt−1 − k̄) + akz−1 (zt−1 − z̄) + akz εt

zt = ρzt−1 + εt
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Structure of the mod file: Some tips
Neoclassical example

Dynare equations

c^(-nu)=beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1)+1-delta);
c+k=z*k(-1)^alpha+(1-delta)k(-1);

z=(1-rho)+rho*z(-1)+e;

δ = 0.025, v = 2, α = 0.36, β = 0.99, and ρ = 0.95 and the results
from the dynare

POLICY AND TRANSITION FUNCTIONS
k z c

constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968
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Structure of the mod file: Some tips
Neoclassical example

The table must be interpreted as follows

k z c
constant 37.989254 1.000000 2.754327
k(-1)-kss 0.976540 -0.000000 0.033561
z(-1)-zss 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

That is, explanatory variables are relative to steady state. (Note that
steady state of e is zero by definition)

If explanatory variables take on steady state values, then choices are
equal to the constant term, which of course is simply equal to the
corresponding steady state value
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Structure of the mod file: Some tips
Log-linearized: Neoclassical example

Specification of the model in level

max
{ct ,kt}∞

t=0

E
∞

∑
t=0

βt
c1−vt − 1
1− v

kt+1 = atkα
t − ct + (1− δ) kt

ln at = ρ ln at−1 + εt

k0 given, Et (εt+1) = 0 and Et
(
ε2t+1

)
= σ2

Model equations

c−vt = Et
[
βc−vt+1

(
α exp (at+1) kα−1

t + 1− δ
)]

kt+1 = atkα
t − ct + (1− δ) kt

ln at = ρ ln at−1 + εt
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Structure of the mod file: Some tips
Log-linearized: Neoclassical example

In particular, Dynare requires that predetermined variables (like the
captical stock) show up as dated t − 1 in the time t equatiion and t
in the tiime t + 1 equations.
We rewrite the model as

c−vt = Et
[
βc−vt+1

(
α exp (at+1) kα−1

t + 1− δ
)]

kt = atkα
t−1 − ct + (1− δ) kt−1

ln at = ρ ln at−1 + εt

yt = atkα
t−1

it = yt − ct
If want all the variable in log form, which means that we want to get
the pecentige deviation, then the model equations can be written
asexp(c)^(-nu) =
beta*(exp(c(+1))^(-nu)*(alpha*exp(a(+1))*exp(k)^(alpha-1) +
(1-delta)));
exp(y) = exp(a)*exp(k(-1))^(alpha);
exp(k) = exp(I) + (1-delta)*exp(k(-1));
exp(y) = exp(c) + exp(I);
a = rho*a(-1)+ e
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Structure of the mod file: Some tips
Log-linearized: Neoclassical example

If want all the variable in log form, which means that we want to get
the pecentige deviation, then the model equations can be written
asexp(c)^(-nu) =
beta*(exp(c(+1))^(-nu)*(alpha*exp(a(+1))*exp(k)^(alpha-1) +
(1-delta)));
exp(y) = exp(a)*exp(k(-1))^(alpha);
exp(k) = exp(I) + (1-delta)*exp(k(-1));
exp(y) = exp(c) + exp(I);
a = rho*a(-1)+ e
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Structure of the mod file: Some tips
Types of endougenous variables

Dynare distinguishes four types of endogenous variables:

Purely backward (or purely predetermined) variables Those that appear
only at current and past period in the model, but not at future period
(i.e. at t and t-1 but not t + 1). The number of such variables is equal
to M_.npred, such as kt .
Purely forward variables Those that appear only at current and future
period in the model, but not at past period (i.e. at t and t+1 but not
t-1). The number of such variables is stored in M_.nfwrd, here is ct .
Mixed variables Those that appear at current, past and future period in
the model (i.e. at t, t+1 and t-1). The number of such variables is
stored in M_.nboth, such as at here.
Static variables Those that appear only at current, not past and future
period in the model (i.e. only at t, not at t+1 or t-1). The number of
such variables is stored in M_.nstatic, such as It , yt here.
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Structure of the mod file: Some tips
Types of endougenous variables

M_.npred + M_.nboth + M_.nfwrd + M_.static =
M_.endo_nbr
The state variables of the model are the purely backward variables
and the mixed variables.
The first order approximation of the decision rules

yt = y s + A (xt−1 − x s ) + But
y s is stored in oo_.dr.ys, x s is part of y s . The vector rows
correspond to all endogenous in the declaration order.
A is stored in oo_.dr.ghx. The matrix rows correspond to all
endogenous in DR-order. The matrix columns correspond to state
variables in DR-order.
B is stored in oo_.dr.ghu. The matrix rows correspond to all
endogenous in DR-order. The matrix columns correspond to
exogenous variables in declaration order.
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Structure of the mod file: Some tips
Types of endougenous variables

Internally, Dynare uses two orderings of the endogenous variables:

the order of declaration (which is reflected in M_.endo_names)
the order based on the four types described above, which we will call
the DR-order (“DR”stands for decision rules).

Most of the time, the declaration order is used, but for elements of
the decision rules, the DR-order is used.

The DR-order is the following: static variables appear first, then
purely backward variables, then mixed variables, and finally purely
forward variables. Inside each category, variables are arranged
according to the declaration order.

Variable oo_.dr.order_var maps DR-order to declaration order, for
instance, y s is stored in declearation order, then
y s (oo_.dr .order_var) is tranformed to DR-order.
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Structure of the mod file: Some tips
Types of endougenous variables

Variable oo_.dr.inv_order_var contains the inverse map, k-th
declared variable is numbered oo_.dr.inv_order_var(k) in DR-order.
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Excute the mod file in Matlab

addpath (’G:\program\ dynare\4.4.3\matlab’); //Add path of dynare
to matlab,

pwd=’G:\My Program\Teaching\Bayesian DSGE\dynare
slides\dynare code\Neoclassical’;
cd (pwd) // set working directory

dynare *.mod
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DSGE as State Space Model

DSGE model can be casted into a linear state space form

State equation

ŷt = Et [ŷt+1] + ĝt − Et [ĝt+1]−
1
τ

(
R̂t − Et [π̂t+1]− Et [ẑt+1]

)
π̂t = βEt [π̂t+1] + κ

(
ŷt −

τ

$
ĝt

)
ŷt = ĉt + ĝt

R̂t = ρR R̂t−1 + (1− ρR )ψ1π̂t + (1− ρR )ψ2

(
ŷt −

τ

$
ĝt

)
where

κ =
1− ν

νφπ2
$, $ = τ + ϕ (1− α) +

α

1− α

ĝt = ρg ĝt−1 + εg ,t

ẑt = ρz ẑt−1 + εz ,t
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Space equations

YGRt = γ(Q ) + 100 (ŷt − ŷt−1 + ẑt )
INFLt = π(A) + 400π̂t

INTt = π(A) + r (A) + 4γ(Q ) + 400R̂t

Why using Bayesian method to estimate DSGE models (An and
Schorfheide, 2007)

It is system-based comparing to GMM estimation.
Prior distributions can be used to incorporate additional information
into the parameter estimation.

The state equation can be solved as

st = Tst−1 + Rεt .

The space equation
yt = D + Zst .
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Bayesian Estimation for DSGE Model

Dejong, Ingram, and Whiteman (2000), Schorfheide (2000) and Otrok
(2001) – the first papers using Bayesian techniques to DSGE models.

Smets and Wouters (2003, 2007) – more than a dozen hidden states
and 36 estimators.

Schorfheide (2000) and Otrok (2001) – Random Walk Metrolpolis
Hasting (RWMH) algorithm

95% of papers published from 2005 —2010 in eight top economics
journals use the RWMH algorithm to estimate DSGE models (Herbst,
2011)

Dynare with Matlab facilitates the use of the RWMH algorithm.
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Bayesian Estimation for DSGE Model

Choosing prior density

Computing posterior mode

Simulating posterior distribution

Computing point estimates and confidence regions

Computing posterior probabilities
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MCMC for DSGE – Metropolis Hasting

For i = 1 to M, M is the number of draws

1 Draw θ from a proposal density q
(

θi |θi−1
)

2 Draw u from U(0, 1)
3 Set θi = θ if

U ≤ α = min{1, p (y |θ) p (θ)
p
(
y |θi−1

)
p
(

θi−1
) q
(

θi−1|θ
)

q
(

θ|θi−1
)}

and θi = θi−1 otherwise.
4 Go to step 1, draw until the desired number of iterations is obtained.
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Random Walk Metropolis Hasting

Random Walk Metropolis Hasting (RWMH) (Schorfheide, 2000):

θ = θi−1 + η, α = min{1, p (y |θ) p (θ)
p
(
y |θi−1

)
p
(

θi−1
)}

where η is a multivariate normal distribution with mean 0 and
variance cΣ̂.
How to choose Σ̂

Σ̂−1 = −∂2 log p (θ|y)
∂θ∂θ′

|θ=θ̂m

where θ̂m = argmax log p (θ|y).
c is used to control the acceptance rate, 0.234 for multivariate normal
target distribution (Roberts et al., 1997) and between 0.20− 0.40 in
practice.
For the linearized case, p (y |θ) can be evaluated by Kalman Filter.
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Structure of the mod file: Estimation

Preamble: Define variables and parameters

Model: Equations of the model

Observables: Load the observed data

Steady State: Specifying the steady state

Prior: Define the prior distribution of the parameters.

Estimation: Estimate the model.

The first two part are the same as in Simulating case.
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Structure of the mod file: Estimation
Observables and Prior

Observables: varobs y

Note that the number of the obsevations should be less than the
number of shocks.

Prior: estimated_params;... end;

The four parameters: parameter name, prior shape, prior mean, prior
standard error
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Structure of the mod file: Estimation
Prior

The shape should be consistent with the domain of definition of the
parameter

Use values obtained in other studies (micro or macro)

Check the graph of the priors

Check the implication of your priors by running stoch_simul with
parameters set at prior mean

Do sensitivity tests by widening your priors
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Structure of the mod file: Estimation
Steady state

Give initial values for steady state
initval;
lc = -1.02;
lk = -1.61;
lz = 0;
end;

Steady state must be calculated for many different values of
parameters, it is better to

Linearize the system yourself, then it is easy to solve for steady state.
Give the exact solution of steady state as initial values.
Provide program to calculate the steady state yourself.
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Structure of the mod file: Estimation
Steady state

Give the exact solution of steady state as initial values, in your *.mod
file include:
steady_state_model;
lz = 0;
lk = log(((1-beta*(1-delta))/(alpha*beta))^(1/(alpha-1)));
lc = log(exp(lk)^alpha-delta*exp(lk));
ly = alpha*lk;
li = log(delta)+lk;
end;

Provide program to calculate the steady state yourself.

If your *.mod file is called xxx.mod then write a file
xxx_steadystate.m. The two files will be in the same directory.
Dynare checks whether a file with this name exists and will use it.
Sequence of output should correspond with sequence given in var list.
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Structure of the mod file: Estimation
Steady state

function [ys,check] = Neoclassical_estimation_ex_steadystate(ys,exo)
global M_
alpha = M_.params(1);
beta = M_.params(2);
delta = M_.params(3);
rho = M_.params(4);
nu = M_.params(5);
z = 1;
k = ((1-beta*(1-delta))/(alpha*beta))^(1/(alpha-1));
c = k^alpha-delta*k;
i = delta*k;
y =c+i;
ys =[ y; i; k; c; z ];
ys =ln(ys);
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Structure of the mod file: Estimation
Estimation

estimation(datafile=cdata,mh_nblocks=5,mh_replic=10000,
mh_jscale=3,mh_init_scale=12) lc;

lc: (optional) name of the endogenous variables (e.g. if you want to
plot Bayesian IRFs)

datafile: file contains observables, the format should be .mat, .m or
.xls.

nobs: number of observations used (default all)

first_obs: first observation (default is first)

mh_replic: number of observations in each MCMC sequence

mh_nblocks: number of MCMC sequences
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Structure of the mod file: Estimation
Estimation

mh_jscale: variance of the jumps in MCMC chain

a higher value of mh_jscale means bigger steps through the domain of
the parameters and lower acceptance ratio.
acceptance ratio should be around 0.234.

mh_init_scale: variance of initial draw, it is important to make sure
that the different MCMC sequences start in different points.
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Result Analysis
Convergence

MCMC should generate sequence as if drawn from the posterior
distribution.

Minimum requirement is that distribution is same

for different parts of the same sequence.
across sequence (if you have more than one).

θij the ith draw (out of I ) in the jth sequence (out of J), θ̄j is the
mean of jth sequence,–θ is the mean across all available data (pooling
all the data).

Define the between variance

B
I
=

1
J − 1

J

∑
j=1

(
θ̄j −–θ

)2
where B

I is the estimator of the variance of sample mean.
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Result Analysis
Convergence

Given a sequence {θi}Ii=1 which is i.i.d. from a random variable y
with variance σ2, the variance of the sample mean θ̄ = ∑I

i=1 θi is
σ2/I .
If we have J different i.i.d. sequences from θ, which is denoted by
{θij}Ii=1, then for each chain we have the mean θ̄j , then {θ̄j}Jj=1 is an
i.i.d. sequence with variance σ2/I .
B
I is the estimator of σ2/I .
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Result Analysis
Convergence

Define the within variance

Ŵ =
1
J

J

∑
j=1

(
1
I

I

∑
i=1

(
θij − θ̄j

)2)
,W =

1
J

J

∑
j=1

(
1

I − 1
I

∑
i=1

(
θij − θ̄j

)2)

then Ŵ and W are both consistent estimators of σ2, since
1
I ∑I

i=1

(
θij − θ̄j

)2 is consistent estimator of σ2.

Between variance should go to zero, limI→∞
B
I −→ 0. And within

variance should settle down limI→∞ Ŵ −→ σ2.

In dynare, read line denote W as function of I and blue line denote
V̂ = Ŵ + B

I

(
1+ 1

m

)
.
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Result Analysis
Convergence

We need red and blue line to get close, and red line to settle down.

The above can be done for any moment, not just the variance.

Dynare computes 3 sets of MCMC statistics

Interval: The length of the Highest Probability Density interval
covering 80% of the posterior distribution.
M2: Variance
M3: Skewness

For each of these, dynare computes a statistic related to the
within-sequence value of each of these (red) and essentially a sum of
the within-sequence statistic and a between-sequence variance (blue)
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Result Analysis
Convergence

For each moment of interest you can calculate the multivariate
version, such as covariance matrix.

These higher-dimensional objects have to be transformed into scalar
objects that can be plotted.

The acceptance rate should be "around" 0.234.

A relatively low acceptance rate makes it more likely that the MCMC
travels through the whole domain of θ.
If the acceptance rate is too high, you can increase mh_jscale.
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Result Analysis
IRF

Impulse responses trace out the response of current and future values
of each of the variables to a one-unit increase (or to a one-standard
deviation increase, when the scale matters) in the current value of
one of the VAR errors, assuming that this error returns to zero in
subsequent periods and that all other errors are equal to zero.

The implied thought experiment of changing one error while
holding the others constant makes most sense when the errors
are uncorrelated across equations, so impulse responses are
typically calculated for recursive and structural VARs.
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Result Analysis
IRF

If we know A, B and the diagonal covariance matrix Σu , we can begin
from:

zt = A−1Bzt−1 + A−1ut

Suppose we are interested in tracing the dynamics to a shock to the
first variable in a two variable VAR: when a shock hits at time 0:

u0 =
[
1
0

]
, z̄0 =

[
Y0
R0

]
= A−1u0

For every s > 0,
z̄s = A−1Bz̄s−1.

Collecting (z̄10, z̄12, z̄13, · · · , z̄1s , · · · ) and (z̄20, z̄22, z̄23, · · · , z̄2s , · · · )
as the impluse response of variables z1t and z2t to the structural
shock u1t respectively.
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Result Analysis
IRF

The SVMA (structral vector moving average) representation of VAR is

zt = Φ (L) et = Φ0ut +Φ1ut−1 +Φ2ut−2 + · · ·+ · · ·

Consider the SVMA representation at time t + s[
z1t+s
z2t+s

]
=

[
φ11,0 φ12,0
φ21,0 φ22,0

] [
u1t+s
u2t+s

]
+ · · ·

+

[
φ11,s φ12,s
φ21,s φ22,s

] [
u1t
u2t

]
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Result Analysis
IRF

The structural dynamic multipliers are

∂z1t+s
u1t

= φ11,s ,
∂z1t+s
u2t

= φ12,s

∂z2t+s
u1t

= φ21,s ,
∂z2t+s
u2t

= φ22,s .

The structural impulse response functions (IRFs) are the plots of φij ,s
vs. s for i , j = 1, 2.

These plots summarize how unit impulses of the structural shocks at
time t impact the level of z at time t + s for different values of s.

SEM (Institute) Short Couse 04/28 53 / 68



Result Analysis
IRF

In stoch_simul command, the option is irf = periods.

In estimation command, the option is bayesian_irf which is used to
trigger the computation of IRFs. The length of the IRFs are
controlled by the option irf = periods.
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Result Analysis
Forecast Error Variance Decomposition

Variance decomposition separates the variation in an endogenous
variable into the component shocks to the VAR.
The variance decomposition provides information about the relative
importance of each random innovation in affecting the variables in the
VAR.
The SVMA (structral vector moving average) representation of VAR is

zt = Φ (L) et = Φ0ut +Φ1ut−1 +Φ2ut−2 + · · ·+ · · ·

The error in forecasting zt in the future is, for each horizon s:

zt+s − Etzt+s = Φ0ut+s +Φ1ut+s−1 +Φ2ut+s−2 + · · ·+Φs−1ut+1

The variance of the forcasting error is

var (zt+s − Etzt+s ) = Φ0ΣuΦ′0+Φ1ΣuΦ′1+Φ2ΣuΦ′2+ . . .+Φs−1ΣuΦ′s−1
(4)
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Result Analysis
Forecast Error Variance Decomposition

Since Σu is diagonal, for the first equation

var (z1t+s − Etz1t+s ) = σ21 (s) = σ21
(
φ211,0 + φ211,1 + · · ·+ φ211,s−1

)
+σ22

(
φ212,0 + φ212,1 + · · ·+ φ212,s−1

)
,

And for the second

var (z2t+s − Etz2t+s ) = σ22 (s) = σ21
(
φ221,0 + φ221,1 + · · ·+ φ221,s−1

)
+σ22

(
φ222,0 + φ222,1 + · · ·+ φ222,s−1

)
.

The proportion of σ21 (s) due to shocks in u1t is then

ρ1,1 =
σ21
(
φ211,0 + φ211,1 + · · ·+ φ211,s−1

)
σ21 (s)

,
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Result Analysis
Forecast Error Variance Decomposition

The proportion of σ21 (s) due to shocks in u2t is

ρ1,1 =
σ21
(
φ212,0 + φ212,1 + · · ·+ φ212,s−1

)
σ21 (s)

.

The forecast error variance decompositions (FEVDs) for z2t+s

ρr ,y =
σ2y
(
φ221,0 + φ221,1 + · · ·+ φ221,s−1

)
σ2r (s)

,

ρr ,r =
σ2r
(
φ222,0 + φ222,1 + · · ·+ φ222,s−1

)
σ2r (s)

.
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Result Analysis
Forecast Error Variance Decomposition (FEVD)

conditional_variance_decomposition = INTEGER

conditional_variance_decomposition = [INTEGER1:INTEGER2]

conditional_variance_decomposition = [INTEGER1 INTEGER2 ...]

In stoch_simul comand, the conditional variance decomposition is
computed at calibrated values of parameters.

In estimation comand, these options compute the posterior
distribution of the conditional variance decomposition, for the
specified period(s).

Note that this option requires the option moments_varendo to be
specified.

SEM (Institute) Short Couse 04/28 58 / 68



Result Analysis
Model Comparison

Prior density p (θA |A), where A represents the model and θA, the
parameters of that model.

Conditional density
p (y |θA,A)

Conditional density for dynamic time series models

p (YT |θA,A) = p (y0|θA,A)
T

∏
t=1
p (yt |YT−1, θA,A)

where YT are the observations until period T .

Likelihood function

L (θA |YT ,A) = p (YT |θA,A)
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Result Analysis
Model Comparison

Marginal density

p (YT |A) =
∫

ΘA

p (YT |θA,A) dθA =
∫

ΘA

p (YT |θA,A) p (θA |A) dθA

Posterior density

p (θA |YT ,A) =
p (YT |θA,A) p (θA |A)

p (YT |A)
Unnormalized posterior or posterior kernel

p (θA |YT ,A) ∝ p (YT |θA,A) p (θA |A)
Posterior predictive density

p
(
Ỹ |YT ,A

)
=

∫
ΘA

p
(
Ỹ , θA |YT ,A

)
dθA

=
∫

ΘA

p
(
Ỹ |θA,YT ,A

)
p (θA |YT ,A)
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Result Analysis
Model Comparison

The ratio of posterior probability of two models is

P (Aj |YT )
P (Ak |YT )

=
P (Aj )P (YT |Aj ) /P (YT )
P (Ak )P (YT |Ak ) /P (YT )

=
P (Aj )
P (Ak )

P (YT |Aj )
P (YT |Ak )

in favor of the model Aj versus the model Ak
The prior odds is P (Aj ) /P (Ak )
The Bayes factor is P (YT |Aj ) /P (YT |Ak )
The posterior odds ratio is P (Aj |YT ) /P (Ak |YT ), if P (Aj ) =
P (Ak ), the posterior odds ratio is same as Bayes factor.
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Result Analysis
Model Comparison

Laplace approximation

P (YT |A) =
∫

ΘA

p (YT |θA,A) p (θA |A) dθA

P̂ (YT |A) = (2π)k/2
∣∣∣ΣθMA

∣∣∣−1/2
p
(
YT |θMA ,A

)
p
(

θMA |A
)

where θMA is the posterior mode.
Harmonic mean

P (YT |A) =
∫

ΘA

p (YT |θA,A) p (θA |A) dθA

P̂ (YT |A) =

1
n

n

∑
i=1

f
(

θ
(i )
A

)
p
(

θ
(i )
A |YT ,A

)
p
(

θ
(i )
A |A

)
−1

where
∫
f (θ) dθ = 1, here we can take f (θ) = p (θA |A).
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Result Analysis
Model Comparison

The convergence of the hamonic mean estimator because

E

 f
(

θ
(i )
A

)
p
(

θ
(i )
A |YT ,A

)
p
(

θ
(i )
A |A

)


=
∫ f

(
θ
(i )
A

)
p
(

θ
(i )
A |YT ,A

)
p
(

θ
(i )
A |A

)p (θ
(i )
A |YT ,A

)
dθ
(i )
A

=
∫ f

(
θ
(i )
A

)
p
(

θ
(i )
A |YT ,A

)
p
(

θ
(i )
A |A

) p
(

θ
(i )
A |YT ,A

)
p
(

θ
(i )
A |A

)
P (YT |A)

dθ
(i )
A

=
∫ f

(
θ
(i )
A

)
P (YT |A)

dθ
(i )
A =

1
P (YT |A)

∫
f
(

θ
(i )
A

)
dθ
(i )
A =

1
P (YT |A)
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Result Analysis
Model Comparison

Geweke (1999) modified harmonic mean

P (YT |A) =
∫

ΘA

p (YT |θA,A) p (θA |A) dθA

P̂ (YT |A) =

1
n

n

∑
i=1

f
(

θ
(i )
A

)
p
(
YT |θ(i )A ,A

)
p
(

θ
(i )
A |A

)
−1

where

f (θ) = p−1 (2π)−k/2
∣∣∣ΣθMA

∣∣∣−1/2
exp

{
−1
2

(
θ − θMA

)
Σ−1

θMA

(
θ − θMA

)′}
×
{(

θ − θMA

)
Σ−1

θMA

(
θ − θMA

)′
≤ F−1X 2k (p)

}
with p an arbitray probability and k, the number of eatimated
parameters.
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Result Analysis
Model Comparison

ΣθMA
is the minus second order derivative of p (YT |θA,A) p (θA |A)

evaluated at the mode θMA .

Larger marginal likelihood means a better model.

In Geweke (1999) modified harmonic mean, f (θ) is truncated
multivariate normal distribution.

In Geweke (1999) modified harmonic mean, we need to use the
posterior draws and the mode.

For Laplace method, we only need the mode.
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Result Analysis
Model Comparison

In Dynare, the marginal density can be compute by estimation
command.

The Laplace approximation of marginal density is stored in
oo._MarginalDensity.LaplaceApproximation.

The Modified Harmonic Mean of marginal density is stored in
oo._MarginalDensity.ModifiedHarmonicMean which is used with
mh_replic>0 or load_mh_file option.
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Result Analysis
Loop with dynare

Sometimes we need to include dynare in a loop of matlab over
different parameters.

In our AR(1) model, starting with .m file with the following code:
rho = 0.90;
se = 0.01;
save parameterfile rho se

And in the .mod file, we change the code to
parameters rho,se; // Parameters of the model
load parameterfile
set_param_value(’rho’, rho);
set_param_value(’se’, se);

SEM (Institute) Short Couse 04/28 67 / 68



Result Analysis
Loop with dynare

To include dynare in a loop of Matlab, we use the following code
rho_value=[0.85 0.90 0.95];
N = size(rho_value,2);
se = 0.01;
Simmean=zeros(N,1); % We want to get the simulated mean for
each value of rho
for i=1:N
rho = rho_value(i);
save parameterfile rho se
dynare AR_demo.mod noclearall
Simmean(i)=oo_.mean;
end
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